
Adding Computer Science to an Introductory Computing
Class for Non-Majors

Gail Carmichael
Carleton University

1125 Colonel By Drive
Ottawa, Canada

gbanaszk@connect.carleton.ca

ABSTRACT
This classroom experience report outlines changes made to
the curriculum of a computing class for arts and social sci-
ence students that has only taught common software usage
in the past. Survey results show that students liked the
addition of computer science topics including algorithms,
human-computer interaction, and visual programming with
the Scratch environment.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Curriculum

General Terms
Algorithms, Human Factors

Keywords
non-majors, arts and social sciences, curriculum, Scratch,
CS Unplugged

1. INTRODUCTION
The School of Computer Science at Carleton University

offers an introductory course for non-majors called COMP
1001: Introduction to Computers for Arts and Social Sci-
ences. The course is taken as a science elective. The under-
graduate calendar [1] provides the following description:

This course is intended to give students in the
arts and social sciences a working knowledge of
computers and their applications; computer fun-
damentals; use of computing facilities; introduc-
tion to graphical user interfaces; a sampling of
software packages applied to problems in the arts
and social sciences.

Based on this, the course content has typically covered ad-
vanced use of software packages that students studying arts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and social sciences would find useful. For example, the Mi-
crosoft Office suite is usually the main focus. Some basics
of data representation, including binary numbers, are also
touched upon.

In preparing to teach this course for the summer 2010
term, I considered the opportunity to introduce the students
to computer science in a way that would be relevant to their
own studies. By doing so, they could gain an appreciation
for the field, exercise their mind by practicing computational
thinking, and find out how computer science can help them
accomplish their goals. There was also the opportunity to
bring the course up to date, since most students seem to
have basic computer knowledge and abilities today.

Others have tackled the issue of including computation in
courses for non-majors. For instance, Joyce [12] reported on
a popular course that focused on how people solve problems
with computers, where the first assignment involved writ-
ing an essay on the topic. Rodger [18] described a course for
non-majors that introduced computer science topics by hav-
ing students make scripts and program for animations and
virtual worlds. Guzdial [10] used computation for commu-
nication as a guiding principle in designing a programming
course for non-majors. He and Forte later reported on the
design process and measured success for that course [11].

Unlike these examples of courses for non-majors, my aim
was not to concentrate solely on programming, or computers
as a problem solving tool. Instead, I combined these topics
with other areas of computer science so that every student
would have the chance to connect with some aspect of the
course. This paper summarizes my experience teaching the
new curriculum. A review of the course content as it was
previously taught begins Section 2, followed by details of
the reinvented curriculum. Results of a survey completed
by students in the course can be found in Section 3 along
with suggestions for improving the new curriculum before it
is taught again.

2. COURSE CONTENT
In this section, I will outline what the course looked like

the semester before I taught it, based on the notes and as-
signments kindly provided to me by the instructor. I will
then discuss my reinvented curriculum, including my objec-
tives, the topics I covered, and how I assessed the students.

It is important to note that because I taught this course
in the summer, the term was condensed into 6 weeks, where
each week had two three-hour classes instead of one. I also
had a much smaller enrollment of sixty students instead
of the several hundred that register during fall and winter

terms. Summer courses also do not have formally scheduled
tutorials, while the courses during the fall and winter terms
often include one hour of tutorial per week.

2.1 Previous Curriculum
The topics covered in the past were:

1. Introduction to Computers. An overview of com-
puter system basics, from hardware components to
commonly used software.

2. Data Representation. How to count in binary and
represent text and images with binary digits. How files
and folders work.

3. Introduction to Computer Software. General in-
troduction to operating systems and software.

4. Introduction to Windows. History of Windows and
basic usage of Windows Vista.

5. Introduction to the Internet. What the Internet
is including history and useful terminology. How to
write basic HTML.

6. Introduction to Microsoft Word. Basic and ad-
vanced use of Word functionality.

7. Introduction to Microsoft PowerPoint. Basic
and advanced use of PowerPoint functionality.

8. Introduction to Microsoft Excel. Basic and ad-
vanced use of Excel functionality.

9. Introduction to Databases. Overview of how databases
work, and how to create them in Microsoft Access.

10. Introduction to Open Source Software. Overview
of licensing and philosophy, and a selection of OSS ap-
plications.

There were four assignments for the course, ten tutorials to
be done during scheduled lab time, a midterm, and a final
exam. The first assignment contained short answer ques-
tions on basic computer usage and data representation. The
second assignment required students to write a web page in
HTML. The third assignment asked students to format ex-
isting text in Microsoft Word. The last assignment was to
create a budget in Excel.

2.2 Reinvented Curriculum

2.2.1 Objectives
My goal with the revised curriculum was to continue ex-

posing students to a variety of software they would find
useful in the future while introducing them to a selection
of computer science topics. Based on this, the three main
course objectives were to:

1. Gain an appreciation of what computer science is and
how it relates to the arts and social sciences.

2. Practice computational thinking.

3. Learn about the software and tools that will help you
succeed in an undergraduate program.

2.2.2 Course Topics
I chose topics that linked back to the course objectives,

and attempted to include the most useful material from the
existing curriculum. I also drew inspiration from my pre-
vious experience creating and teaching a week long mini-
course on games and computer science for grade eight girls
[7]. I was able to use some of the same material adapted to
the undergraduate level. I included many interactive class-
room activities in my lectures to keep the students more
engaged and encourage a deeper understanding of the sub-
ject.

The topics in the order I taught them were:

1. Introduction to Computer Science and Compu-
tational Thinking. A broad sense of what computer
science is and how it connects to various other fields.

2. Binary Numbers and Data Representation. Bi-
nary counting, text representation and compression,
and vector and bitmap image representation.

3. Basic Programming with Scratch. Key program-
ming concepts including loops, conditionals, and vari-
ables.

4. Introduction to Microsoft Word and PowerPoint.
Basic and advanced use of Word and PowerPoint.

5. Algorithms. Linear, binary, and hash table search,
selection sort, and quick-sort.

6. Human Computer Interaction. Application of se-
lect principles and theories to existing projects.

7. Using the Internet Effectively: Security, Soft-
ware and Tools. Searching, website creation, wikis,
etc.

8. Open Source Software. Licenses, philosophy, com-
mon OSS applications.

When introducing computer science, I played a video pro-
duced by the University of Washington that shows five com-
puter scientists working in various types of jobs and research
[20]. The video gives a good sense of what computer science
is, and most who watch find they can connect with at least
one of the people featured. This is particularly beneficial to
women, who tend to attach their interest in computer sci-
ence to other areas of life [15]. We discussed in more depth
how computer science related to many of the fields the stu-
dents were studying, such as psychology and law.

For the data representation topic, I created poster cards
representing binary digits from the CS Unplugged [6] binary
numbers activity, and asked volunteers to use them to count
at the front of the classroom. We looked at how ASCII
codes worked, and used the CS Unplugged activity on text
compression to see how data might be represented in a more
compact way. We also saw the difference between bitmap
and vector graphics and discussed their use in 3D graphics.

I spent one three-hour class giving a tutorial on Scratch
[9], encouraging the students to try a few tutorials on their
own. We looked at some of the content in lesson plans from
The Irish Software Engineering Research Centre [19] and
videos from Learn Scratch [3]. I walked through how to
create a simple game as an example of what they might
want to make on their own.

I limited my instruction on Word and PowerPoint to two
three-hour classes, and based the content almost completely
on the previous year’s lecture notes. Instead of lecturing,
however, I created tutorial sheets that I handed out to stu-
dents. Each volunteer used their tutorial to teach a small
number of techniques to the rest of the class.

My lesson on algorithms was largely intended to provide
a concrete opportunity to practice computational thinking.
I once again adapted CS Unplugged activities on sorting
and searching to allow the students to discover how these
algorithms worked experientially. For sorting, I gave eight
volunteers a random piece of paper with a number marked
on it. A ninth volunteer had to sort the others based on
the rule that she could only ask two volunteers who had
the bigger number. The students worked in pairs to try
linear, binary, and hash table searching using the same set
of numbers found in the CS Unplugged searching activity.

In the human-computer interaction class, I introduced the
general idea, then described several theories and principles
used by designers. In particular, we looked at Donald Nor-
man’s principles of design and seven stages of action from
his book Design of Everyday Things [17]. Then I played
Norman’s TED talk on emotional design, based on his book
on the same topic [16]. I also briefly described the concepts
of embodied and situated cognition and how they apply to
learning, using two augmented reality projects as examples
(Environmental Detectives [14] and Construct3D [13]). The
students then watched several videos of up and coming inter-
faces and discussed how these theories and principles could
apply.

For the lecture on the Internet, I asked a PhD student in
security to give a guest talk on her research. I showed some
tips for searching effectively online, contributing to wikis like
Wikipedia, and other related topics. HTML was not covered
in depth; instead, I gave a brief overview of the syntax and
available resources. I also demonstrated how to make a web
site with tools like Google Sites [2] and suggested a few on-
line tools the students would find useful for collaborating on
school projects.

Finally, I introduced open source software (OSS). To un-
derstand the idea behind OSS licensing, we looked at Cre-
ative Commons licenses [8]. We discussed the pros and cons
of making your work available with such licenses, and then
I showed some freely available open source software the stu-
dents might want to use in the future.

2.2.3 Assessment
Due to the compressed nature of the term, I opted to have

two assignments and a four-part project, but no midterm.
The final exam tested students’ understanding of most of
the material discussed in class, though details about how to
use software were not covered.

The first assignment was given in the first week of class. It
was called “How Can Computing Help?” and was intended
to get students thinking about how computer science is re-
lated to something they care about. Students were asked to
think of a hobby or their own field of study, and to research
how computing can make tasks in that hobby or field easier.
For example, a photographer might discuss how searching
algorithms make it easier to find tagged photos in a large
collection, and they might mention some image processing
techniques found in image editing software. In the process,
they learned how to search for sources related to computer

science, and saw the kind of issues they could approach a
computer scientist with if they ever needed to collaborate
with one. The result was a short paper of at least 1000
words.

The second assignment was to create a project (or several
smaller projects) in Scratch. Students were free to create
anything they wanted to, from an interactive animation to
a simple game. Their grade was based on a set of technical
requirements, such as using at least one loop, if statement,
and variable. They also had to incorporate some kind of
user interaction. The students were invited to show their
projects in class so they could feel pride in their creations.

The project was a set of four assignments related to a par-
ticular piece of software each student chose to learn about.
There was a limit on how many people could work on a
single piece of software, and software shown during lectures
was off-limits, so variety was guaranteed. Each part of the
project was designed to provide an opportunity to learn ad-
vanced functionality of Word, PowerPoint, and a website
building tool for a real and practical purpose.

In the first project assignment, students were asked to
write a tutorial about their software. Again they had con-
siderable freedom to choose what and how much to write,
and were given a set of technical requirements related to ad-
vanced formatting in Microsoft Word. The idea was that by
giving students had a real purpose for using the formatting
instead of simply applying it to previously written text, they
would feel more motivated.

In the second project assignment, each student exchanged
their written tutorial with another student, and used Word’s
change tracking feature to make comments, corrections, and
suggestions. The original tutorials were not graded until
students received the reviewed version and had a chance to
improve it. The idea was to provide feedback before as-
sessment to help students produce the best work possible
(something emphasized in Bain’s research of the best col-
lege teachers [5]), and to expose the reviewer to a new piece
of software in the tutorial they were reviewing.

The next part of the project involved forming small groups
and presenting software that someone in the group had writ-
ten about. This gave students the opportunity to learn
about even more software other students had studied, cre-
ate a presentation with PowerPoint, and practice effective
presentation skills.

The last project task was to transform the written tu-
torial into a web page. Students were encouraged to use
either Google Sites [2] or Weebly [4]. An interactive com-
ponent was required, such as a click-through tutorial built
with screenshots in Scratch.

3. EVALUATION AND OUTCOME
At the end of the term, I asked students to fill in an anony-

mous, informal survey online to assess the success of the
course. Out of the 61 registered students, 26 completed the
survey. Most completed it before the final exam. This sec-
tion summarizes some of the results, followed by suggestions
for improvement.

3.1 Survey Results
The questions in the survey were designed to capture gen-

eral attitudes of the students taking this course as well as
determine how successful each component of the course was.
The first set of questions provided a statement and a scale

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

EasyScience Elective

Figure 1: Survey results for “I took this course be-
cause it was an easy science elective.”

from 1 (strongly disagree) to 5 (strongly agree). There were
several short answer questions at the end.

As this course had a reputation of being an easy elective,
the first question was used to determine whether that was
the motive of the student for taking it. The results are shown
in Figure 1. Just over half the respondents said they agreed
or strongly agreed with this statement and 5 were neutral.
Because so many were willing to admit that this was their
reason for signing up, it would be easy to suggest that they
were not interested in learning more about computer science.
However, based on the remaining survey results, this was not
the case.

For instance, despite the fact that 15 students agreed or
strongly agreed that they were worried about the new course
content, 21 agreed or strongly agreed that they were look-
ing forward to learning something new. Perhaps a more
important indicator is the response to the statement on en-
joying learning about computer science and its connections
to other fields, summarized in Figure 2: 19 students agreed
or strongly agreed that they enjoyed this topic. In fact,
more than half the respondents agreed or strongly agreed
that they enjoyed learning about each topic in the course,
except for searching and sorting algorithms. Only 8 agreed
or strongly agreed they enjoyed learning about algorithms,
and 12 were neutral.

For each topic in the course, students were given a state-
ment that said they felt they understood it. The results
for binary numbers and data representation are in Figure
3, for Scratch in Figure 4, for algorithms in Figure 5, and
for human-computer interaction in Figure 6. These are the
main topics that covered actual computer science concepts
and thus give the most insight into the success of adding
computer science concepts into the curriculum. More than
half the respondents said they understood each topic ex-
cept for searching and sorting, where 12 agreed or strongly
agreed they understood it. Based on this, it is fair to con-
clude that non-major students without a previously avowed
interest in computer science are capable of understanding
computer science topics if they are presented in an effective
way.

The portion of the survey that allowed students to write
short answer questions gives a good idea of what specifi-
cally worked well in terms of teaching methods and content,
and what needs to be improved. One of these questions
asked what piece of software or topic the respondent found
the most interesting, without giving any options to choose
from. Some students listed more than one topic. The top-
ics noted were: Scratch (9), software from student projects
(5), human-computer interaction (3), Internet security (2),
none (2), all topics (2), binary numbers (2), and open source

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Enjoyed Learning CS Connections

Figure 2: Survey results for“I enjoyed learning what
computer science is and how it connects to other
fields.”

0

2

4

6

8

10

12

1 2 3 4 5

Understood Data Representation

Figure 3: Survey results for“I feel I understand data
representation (binary numbers, images, etc).”

0

2

4

6

8

10

12

1 2 3 4 5

Understood Basic Programming

Figure 4: Survey results for “I feel I understand
basic programming concepts after using Scratch.”

Figure 5: Survey results for “I feel I understand
searching and sorting algorithms.”

0

2

4

6

8

10

12

1 2 3 4 5

Understood HCI

Figure 6: Survey results for “I feel I understand the
ideas behind human computer interaction.”

software (1).
When asked about the assignments specifically, some stu-

dents felt that the Scratch project was interesting but not
relevant to their own studies. Some said there was too much
work for a summer course while others suggested the assign-
ments were easy. Several students said that learning the
more advanced functionality of Word for the assignments
was one of the most useful things they will take away from
the course. A selection of both positive and negative com-
ments written by students about the course topic and as-
signments follows:

• Using the review, formatting and reference tools in
Word is something that I could have used a lot in
the last three years to make my essay writing more
efficient.

• I never dreamed I could program my own computer
game and want to put it on my website for my field of
study!

• I thought scratch was a really nice and easy program
to use to let your imagination run wild :)

• Perhaps a little more focus on HCI I think a lot of
people will find this relates more to their arts/social
science degree, and got a little lost when we were cov-
ering this material.

• Making the website was a great idea. Very useful. The
first assignment was useful. It helped look at academic
sources (articles) and gave me an idea of what research
is out there in the compsci field.

• Scratch was an annoying, difficult program and will
bear no usefullness to me in the future.

• I would discard the Scratch assignment and focus on
more academic type programs.

Some students found the presentations useful, especially be-
cause I gave them specific tips on how to give an effective
talk. Unfortunately, there was not really enough time to
have presentations that covered software in any detail. I
asked students to give an overview instead so the rest of
the class would know whether the software would be useful
to them. Some specific comments about the presentations
follow:

• Very helpful. Also, I found some of the other presen-
tations to be very helpful as well.

• I learned about several software programs that I have
never heard about before.

• It was hard to sit through things that I already knew
about.

• While useful to an extent, not having the presentations
for future use limits their usefulness

• The presentations were very basic, in fact not even tu-
torials (more selling the software) so we didn’t get a
chance to learn a lot about the actual software pro-
grams. It was interesting though to hear about differ-
ent programs.

• I did find it useful to learn a new piece of software but
found the presentations were not as informative.

Much of the content was delivered via activities and discus-
sions. This was appreciated by many students who found
it was easier to pay attention and learn the content in a
deeper way. Many specifically said they appreciated the bi-
nary numbers demo. A small number of respondents very
much disliked this style of teaching, however, saying that
the activities were juvenile. Some of the comments about
the activities follow:

• Overall I feel that all activities helped us get a more
hands on learning experience, and helped the 3 hour
lecture go by a little quicker.

• Binary numbers making the 8 charts and have students
come up and sort through the numbers was useful.

• The exercise understanding binary was something I
will never forget for the rest of my life. Because it
was a physical/visual exercise i will always remember
how to convert binary to decimal.

• i hated all the class participation. it made me feel like
i was 5

• The classroom exercises seemed a little childish.

Finally, a selection of comments about the course in general
follows:

• Next to the overall usefulness/value of my psychology
program, this is by far the most influential course of
my undergraduate career.

• I liked learning more about how computers work and
function. As an arts major it is difficult to get into
most computer science courses.

• Overall the course and materials were very well pre-
sented and will no doubt be more helpful than contin-
uing with the previous course content.

• Going in, at this day and age you tend to think you
already know about computers and how to use some
of the softwares that are listed in the course but you
soon realize that there is a lot you don’t know.

In summary, while there are some aspects to improve, the
course was well received overall. The students appreciated
being challenged and learning about real computer science,
and they felt confident about their knowledge and under-
standing of the subject.

3.2 Future Improvement
While the new course content has been a success over-

all, there are several areas for potential improvement. The
following suggestions are based on my own reflection and
observation as well as the survey results summarized above.

The order of the topics covered may not have been ideal.
For instance, an introduction to Word and PowerPoint should
probably be the first topic after the introduction so that
students can use the built-in reference system on the “How
Can Computing Help” assignment. This assignment might
also be better situated after the lecture on human-computer
interaction to give more ideas for connecting the topic of
choice to computer science. Algorithms could be taught be-
fore Scratch to put students in the mindset of computational
thinking before attempting to create their programs, but

learning Scratch first might help make the case for sitting
through a class on algorithms, since it may be seen as more
fun.

I would not change any of the main topics for the course.
As expected, some students did not like learning how to
program, but a surprising number of them were very positive
about it. It is not necessary to use Scratch, but some kind of
visual programming language is probably a good idea since
it takes away the overhead of learning how to compile and
allows for quick and easy visual output.

The utility of the presentations was poor compared to the
time spent on them, and they would be impractical for a
large class. Instead, the written tutorials could be shared
with all students. Advanced use of Excel, as taught in the
previous curriculum, would be a more relevant skill for this
course.

I would suggest continuing to use interactive activities as
much as possible in the future. Some appear to be more
difficult to use in a large classroom, but can either be done
as demonstrations by volunteers at the front of the room (as
I did with the sorting activity), or adapted to be completed
on laptops brought to class by students.

4. CONCLUSION
This paper reported on a new curriculum for a computing

class taken as a science elective by arts and social science
students. A survey completed by the first students the cur-
riculum was taught to showed a positive attitude toward
the addition of computer science topics to a course that pre-
viously focused on software usage. The use of interactive
classroom activities was also mostly well received.

These results show that computer science concepts can
be made accessible for students not majoring in the subject.
Despite the fact that many may be enrolling simply to obtain
their science elective credit, and thus do not have a deep
interest in learning computer science, they are able to learn
and enjoy the topic when it is presented to them effectively.
The key factor appears to be connecting computer science to
their own fields of study and interest while providing them
with useful skills they currently lack (such as advanced word
processing and web site creation).

Computer science departments that have similar courses
can feel confident in taking a chance and updating the cur-
riculum to include more technical topics. As an added bonus,
perhaps some non-majors will even discover a love of com-
puter science and find themselves looking for a new minor.

5. REFERENCES
[1] Carleton University Undergraduate Calendar.

http://www.carleton.ca/calendars/ugrad/current/
[accessed September 2010].

[2] Google sites. https://sites.google.com [accessed
September 2010].

[3] Learn scratch. http://learnscratch.org [accessed
September 2010].

[4] Weebly. http://www.weebly.com/ [accessed September
2010].

[5] K. Bain. What the Best College Teachers Do. Harvard
University Press, 2004.

[6] T. Bell, I. Whitten, and M. Powell. Computer science
unplugged. http://csunplugged.org/ [accessed
September 2010].

[7] G. Carmichael. Girls, computer science, and games.
SIGCSE Bull., 40(4):107–110, 2008.

[8] C. Commons. About licenses.
http://creativecommons.org/about/licenses/ [accessed
September 2010].

[9] L. K. Group. Scratch. http://scratch.mit.edu/
[accessed September 2010].

[10] M. Guzdial. A media computation course for
non-majors. SIGCSE Bull., 35(3):104–108, 2003.

[11] M. Guzdial and A. Forte. Design process for a
non-majors computing course. In SIGCSE ’05:
Proceedings of the 36th SIGCSE technical symposium
on Computer science education, pages 361–365, New
York, NY, USA, 2005. ACM.

[12] D. Joyce. The computer as a problem solving tool: a
unifying view for a non-majors course. In SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education, pages
63–67, New York, NY, USA, 1998. ACM.

[13] H. Kaufmann, D. Schmalstieg, and M. Wagner.
Construct3d: A virtual reality application for
mathematics and geometry education. Education and
Information Technologies, 5:263–276, 2000.

[14] E. Klopfer and K. Squire. Environmental detectives -
the development of an augmented reality platform for
environmental simulations. Educational Technology
Research and Development, 56:203–228, 2008.

[15] J. Margolis, A. Fisher, and F. Miller. Caring about
connections: gender and computing. Technology and
Society Magazine, IEEE, 18:13–20, 1999.

[16] D. Norman. Emotional Design: Why We Love (or
Hate) Everyday Things. Basic Books, 2003.

[17] D. A. Norman. The Design of Everyday Things. Basic
Books, September 2002.

[18] S. H. Rodger. Introducing computer science through
animation and virtual worlds. In SIGCSE ’02:
Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, pages 186–190, New
York, NY, USA, 2002. ACM.

[19] The Irish Software Engineering Research Centre.
Scratch lesson plans.
http://www.lero.ie/educationoutreach/secondlevel/
[accessed September 2010].

[20] University of Washington. Why Choose CSE?
http://www.cs.washington.edu/WhyCSE [accessed
September 2010].

