
Curriculum-Aligned Work-Integrated Learning: A New Kind of
Industry-Academic Degree Partnership

Gail Carmichael
Shopify

Ottawa, Ontario
gail.carmichael@shopify.com

Christine Jordan
Shopify

Ottawa, Ontario
christine.jordan@shopify.com

Andrea Ross
Shopify

Ottawa, Ontario
andrea.ross@shopify.com

Alison Evans Adnani
Shopify

Ottawa, Ontario
alison.evansadnani@shopify.com

ABSTRACT
Work-integrated learning is a common approach to add practical,
real-world work experience to academic settings. Traditional co-
op programs in colleges and universities alternate courses with
semesters spent as an intern at a relevant workplace. We have de-
signed an academic-industry partnership that takeswork-integrated
learning further by deliberately aligning workplace experience to
the academic curriculum. Our students earn a Bachelor of Com-
puter Science from the university, and are paid employees of the
industry partner throughout their degree. While advanced courses
and electives are taken on campus as usual, some core computer sci-
ence classes and practicum courses are delivered with the industry
partner so as to integrate them with placements on site. Assessment
remains the responsibility of the university. In this report, we de-
scribe the partnership from the perspective of the industry partner.
We describe our goals, partnership design, and first two iterations
of the implementation. We discuss the challenges we have faced
with our first cohort, and share suggestions for others looking to
create similar programs.
ACM Reference Format:
Gail Carmichael, Christine Jordan, Andrea Ross, and Alison Evans Ad-
nani. 2018. Curriculum-Aligned Work-Integrated Learning: A New Kind
of Industry-Academic Degree Partnership. In Proceedings of The 49th ACM
Technical Symposium on Computer Science Education, Baltimore, MD, USA,
Feb. 21–24, 2018 (SIGCSE ’18), 6 pages.
https://doi.org/10.1145/3159450.3159543

1 INTRODUCTION
The educational needs of the twenty-first century’s workforce are
constantly in flux as scientific breakthroughs and new technologies
redefine the nature of work. Educational institutions are not struc-
tured to be immediately responsive to changing skills demands,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02.
https://doi.org/10.1145/3159450.3159543

and require time to redesign and rejuvenate their curricula. Not
enough students are graduating with the skills necessary to meet
the technology industry’s workforce needs [6]. The gap between
skills provided by higher educational institutions and those that are
needed in the workforce is especially apparent in computer science
education, where programming languages, tools, and best practices
are constantly evolving. The challenges facing computer science
education relating to its rapid evolution along with the employabil-
ity of graduates has been a topic of discussion and debate for many
years [2, 5].

Several work-integrated learningmodels have been implemented
in post-secondary educational institutions, such as industry-focused
capstone projects and cooperative education projects. One way that
work has been integrated with student learning is by having stu-
dents perform capstone projects working with industry. A capstone
project typically happens in the last year of a student’s degree, as
a culminating project that builds upon the knowledge the student
has gained throughout the course of their degree program. An ex-
ample of this is the Undergraduate Capstone Open Source Projects
(UCOSP) [1] program that allows Canadian undergraduate com-
puter science students to work on open source software projects for
academic credit. With capstone projects happening at the end of a
degree, it may be several years until students are able encounter the
real-world applications of the theory they are learning. A disadvan-
tage of this approach is that students do not get the motivational
benefit of problem-based learning when a concept is introduced.

Cooperative education has been a popularmodel of work-integrated
learning, but has remained mostly unchanged since its initial incep-
tion in 1957 [4]. It provides students with alternating learning terms
at an academic institution and work terms in the workplace. De-
pending on the program, students may complete all their working
terms at the same employer, or acquire a variety of work experiences
by changing employers each term. It benefits students by allowing
them to connect with their community of practice and work on real-
world applications. However, there are several short-comings of
the cooperative education model; in particular, the work performed
in work terms is not guaranteed to reinforce the concepts that stu-
dents have been learning or align with students’ coursework. With
learning and work terms being performed consecutively, students
must wait months before being able to see the applications of the
theory they have learned in class.

https://doi.org/10.1145/3159450.3159543
https://doi.org/10.1145/3159450.3159543

Shopify and Carleton University have partnered to deliver Car-
leton’s Bachelor of Computer Science degree in a whole new way.
Instead of separating coursework and work placements, students in
the program are immersed in the work environment and have the
opportunity to connect the two deliberately and deeply. We call our
approach curriculum-aligned work-integrated learning (CAWIL).
In this report, we describe our partnership from the perspective of
the industry partner. We introduce details of CAWIL in Section 2,
including goals and the high level design of the partnership. In Sec-
tion 3, we discuss the first and second iterations of implementing
the partnership. We conclude in Section 4 with some suggestions
for those considering their own CAWIL programs based on lessons
we have learned so far.

2 CURRICULUM-ALIGNED
WORK-INTEGRATED LEARNING

2.1 Partnership Goals
It is our philosophy that excellent software developers come from
many types of backgrounds, and that a background incorporating
both theory and practice is particularly valuable. We decided to
partner with a local university to try a new approach to delivering a
Bachelor of Computer Science degree. The university covers the the-
oretical aspects of the program as usual, while we not only provide
relevant work experience, but deliberately align workplace com-
petencies with the material learned on campus. We call our model
curriculum-aligned work-integrated learning (CAWIL).

Our goal is to create a model that is different from other com-
puting education initiatives. We are not trying to replicate the idea
of a bootcamp, where the focus is much more heavily on specific
industry technologies. We are also not offering an apprenticeship
in the traditional sense, though there are aspects of apprenticeship
in our team placements. We are closest to the idea of co-op. How-
ever, we are not alternating team placements with semesters on
campus and hoping that students see how theory from courses can
be applied on the job. Instead, students work and study at the same
time, and we explicitly connect the two.

We consider a successful curriculum-aligned work-integrated
learning experience to have the following characteristics:

• student coursework is deliberately and intentionally con-
nected to team placements

• students have opportunities to master academic learning
outcomes through their team placements and our in-house
supporting curriculum

• whenever possible, students experience a concept in a prac-
tical setting through their team placements before they see
the associated theory

• the time that passes between experiencing a concept and
learning the theory is minimized

• students are given formal opportunities to reflect on connec-
tions between theory and practice

Shopify is a software company providing a commerce platform to
entrepreneurs. Shopify’s priorities naturally focus on its business.
Broadly, our business goals are:

• increase the pipeline of talented, qualified computer sci-
ence graduates to our company and more generally in

Canada, all with a favorable opinion of Shopify as an em-
ployer

• improve Shopify’s ability to onboard and accelerate the
impact of junior employees, thus widening the pool of
talent we can recruit

• achieve these goals in a way that delivers the highest pos-
sible return on investment (for example, by having our
students contribute to the company in a meaningful way by
the end of their degree)

To reach our business goals, we strive to support our students in
becoming:

• competent computer scientists – Our students should
build strong theoretical knowledge and deep experiential
wisdom, and see meaningful connections between the two.

• co-creators of an exceptional learning experience – Stu-
dents and educators should co-create a learning environment
that is active, learner-centered, and problem-based.

• resilient and in control – Students should understand
what is expected of them throughout their degree. They
should not feel overwhelmed by the program’s difficulty,
and be able to maintain a reasonable work/life balance. They
should feel well supported, for example through on-site
coaching.

• cultural role models – Students should be able to fit well
into the company’s culture and be committed to its mission.

• empowered and valued employees – Students should see
that they are contributing to the company through their
work, and not feel indebted when they finish school.

• connected collaborators – Students should build cama-
raderie among their cohort, and become well connected both
within and outside of the company.

In the following, the design of our partnership, and our experience
implementing it over the past year, should be read in the context of
these goals.

2.2 Partnership Design
Both Carleton University and Shopify contributed to the design of
our partnership. On the university side, changes were required to
accommodate the team placements in a way that supports CAWIL.
Fortunately, we did not require the creation of a new degree pro-
gram. Instead, we were able to add a special option to the existing
Bachelor of Computer Science Honours program. It is very impor-
tant to note that Carleton is still granting the degree, not Shopify.
Carleton fully owns the assessment of students and assignment of
grades. The same standards apply to all students, whether part of
our partnership or not.

Students participating in the partnership are paid Shopify em-
ployees throughout their degree, both through a salary and tuition
grant. There is no need to take on a part time job during school,
and students can graduate debt free. After some time focused on
learning fundamental computing skills, students join development
teams and contribute to our products while learning competencies
in a practical setting. After joining teams, students spend time both
studying and working, ideally integrating practice and theory as
per the goals of CAWIL. They are able to finish their degree in four

years, and graduate with at least as many hours of work experience
as a typical co-op program that usually takes five years to complete.

Most credit requirements in the degree remain the same, ex-
cept that eight free electives become practicum credits. Practicums
are pass/fail courses that capture the industrial skills students are
learning at the company, both through their team placements and
through educational material developed at Shopify. Practicums are
also used to give credit for the acquisition of soft skills and explo-
ration of other CS topics of interest. Two practicums are covered
each year, and each year has a theme.

The degree includes eight core computer science courses that
all students take, including CS1, CS2, and web development funda-
mentals. It is through the core courses that we want to tie theory
and practice together especially tightly. We aim to have the com-
petencies from these courses mastered on site at Shopify through
active learning workshops, self-directed learning, and work on team
placements.

Math courses, advanced computer science electives, and breadth
electives are taken on campus as usual. We encourage students to
take breadth electives later in their degree than is typical, pushing
CS content earlier. We do this to ensure students are ready to join
teams as soon as possible, and to help students find electives later
on that can connect to their computing skills and interests.

Students interested in participating in our partnership for their
degree must apply for one of a limited number of places. Students
apply first to the university, and if they are accepted to the Bachelor
of Computer Science Honours program, they submit an application
portfolio to Shopify. We screen students based on their applications,
then interview them in a process quite similar to other Shopify
interns. We look for students who have a demonstrated passion for
wanting to solve real-world problems with computing, along with a
strong academic background and/or at least some prior experience
with computing. We believe strongly in the value of diversity, and
work hard to encourage underrepresented groups in tech to apply.

Accepted students can expect to receive extra support from
Shopify staff. Our team provides coaching before students join
teams and instructional support for material delivered on site. We
help them get used to what is quite a new way of learning for most
of them, and help them navigate a career as a software developer –
this will be the first job many of our students have had. Placement
teams provide mentors and coaching after students start working.

3 PARTNERSHIP IMPLEMENTATION
Shopify welcomed our first cohort of students in September 2016.
They experienced the first implementation of the partnership design
described above, and encountered our first set of challenges. Both
are discussed below as the alpha version of the implementation. We
took what we learned from our first cohort and designed the beta
version of the partnership, which will partially be implemented for
the first cohort and fully implemented for the second cohort that
joined us in September 2017.

3.1 Alpha Implementation
Our first cohort of students joined us in September 2016 for the
alpha implementation of our program. We had eleven students total
(six female, five male). Four were mature students, returning to

school having completed another degree some time in the past. We
tested the alpha implementation design for two semesters before
transitioning to the beta design.

Figure 1 summarizes the structure of the alpha implementation.
Students took up to three courses and a practicum each semester,
including over the summer (on-campus students typically take five
courses each in the fall and winter semesters). Team placements
began in the second semester, when material for the core computer
science courses was learned through placements as well as work-
shops and self-paced learning delivered on site. Students would be
working on teams every semester after that except for two, when
they would attend courses on campus full time.

One of our most important goals is to increase the number of
talented software developers primarily at Shopify, as well as in the
greater community in Canada. As such, we designed an unconven-
tional path through Carleton’s Bachelor of Computer Science. Stu-
dents typically take CS1 and CS2 in their first and second semesters
respectively, which then opens up a number of core courses that can
be taken in second year; math courses and breadth electives fill out
most of the first year. We wanted to accelerate when our students
acquired fundamental computing skills so they could meaningfully
contribute to the company as soon as possible. Delivering both CS1
and CS2 back to back in the first semester helped meet this goal, as
did getting students onto placement teams as fast as possible.

Not shown in Figure 1 is a Ruby on Rails bootcamp given to stu-
dents at the beginning of the second semester. After the two week
long intensive introduction to the technology used on web-centric
teams at Shopify, students started their first placements. In the sec-
ond semester, web development and data structures competencies
were meant to be mastered through work on teams, self study, and
active-learning workshops delivered on site. Students participated
in the assessments given on campus. The plan was for students to
rotate their team placements every two semesters with the goal of
performing work closely related to the competencies of the core
courses delivered in that timeframe.

Mentoring was structured such that each student received one-
on-one time with a mentor from the education team. During bi-
weekly meetings (and additionally as needed), the mentor and stu-
dent discussed academic progress and personal development. The
student was also encouraged to provide feedback about the part-
nership. Mentors also met with each other biweekly to discuss the
topics to cover in the next sessions and to raise any issues that need
to be addressed by the team.

3.2 Alpha Challenges
As is to be expected with an undertaking this large, we ran into
several challenges with the alpha implementation of our partner-
ship. Some of these were due to time and staffing constraints on the
company side, and others indicated where we could improve our
design. We collected data from our mentorship and instructional
sessions, interactions with education staff, and formal anonymous
surveys sent regularly to students to measure against the goals of
Section 2.1.

Our first semester with CS1 and CS2 was largely successful. Stu-
dents performed well in the online, self-paced courses and generally
maintained a reasonable balance with their on-campus course, their

Introduction to Computer Science I Introduction to Computer Science IIDiscrete Structures I Practicum

Discrete Structures II Abstract Data Types and Algorithms Fundamentals of Web Applications Practicum

Linear Algebra Introduction to Systems Programming Database Management Systems Practicum

Elementary Calculus I Introduction to Software Engineering Operating Systems Practicum

Introduction to Statistical Modelling I Design and Analysis of Algorithms I Object-Oriented Software Engineering Practicum

Breadth Elective 1

Programming Paradigms

Practicum

Advanced Elective 1 Advanced Elective 2 Breadth Elective 2 Breadth Elective 3

Breadth Elective 5 Breadth Elective 6 Practicum

Breadth Elective 8Breadth Elective 7 Practicum

Honours Project

Breadth Elective 4

Advanced Elective 3 Advanced Elective 4 Breadth Elective 9 Breadth Elective 10 Math Elective

Y
ea

r 1
Y

ea
r 2

Y
ea

r 3
Y

ea
r 4

F

W

S

F

W

S

F

W

S

F

W

On-campus course Learned at company Other

Figure 1: Course sequence for alpha implementation.

practicum, and getting settled into life at Shopify. We had originally
planned to deliver our Ruby on Rails bootcamp for three to four
weeks at the end of the semester, but were unable to dedicate time to
its development. Instead, we held a two week bootcamp created by
another Shopify employee at the beginning of the second semester.

Students joined teams immediately after the bootcamp, but were
not sufficiently prepared. The bootcamp was too short, and could
have been better designed pedagogically. Further, students were
not proficient enough in GitHub, which we intended for them to
use for their practicum projects and which was covered again only
superficially during the bootcamp. In some cases, students had not
developed strong enough programming skills for the particular
teams they were joining.

Teams were not sufficiently prepared to accept our students,
either. It took us an unexpectedly long time to find teams willing
and able to take on our relatively junior students when they were
used to interns further on in their education. As a result we ran out
of time to prepare the teams that did agree. We did not set proper
expectations of what level our students would be at and what kind
of work they should do. Developing scaffolds to be used in the
future would benefit not only our own students, but the ability of
all teams across the company to take on more junior employees.

Delivery of our two second semester courses – web development
and data structures – failed to meet our goals of CAWIL. Students
had the option of participating in just the final exam for each course,
but did not want their entire mark based on one test. They opted
to take the midterm as well as submit assignments, the latter to
help prepare for the former. Unfortunately, by participating in all
the assessments, we were very tightly tied to the cadence of the
on-campus course, yet we did not get information from instructors
any sooner than the students. In the case of the web development
course, we also found ourselves tied to the technologies used on
campus, which did not match what we used in house. Students
struggled with the self-directed learning we assigned them and

yearned for more structure. Because of these challenges, placement
work did not contribute directly to learning the core CS courses and
we were unable to spend time in workshops making connections
to it.

The difficulties of the second semester negatively affected our
students’ well being. Joining teams too early caused them a large
amount of stress and anxiety. We discovered that their trust in the
education team diminished. With team members acting as mentors
as well as instructors, students were not forthright and often did
not bring forward their actual concerns, or tell us if they were in
crisis. Additionally, most students coming from high school were
experiencing their first professional job experience. Not all knew
how to behave in some situations without additional coaching,
sometimes escalating situations further.

One interesting issue that arose that may have contributed to
some of the other problems is that of student perception. After team
placements began, we found that some students felt that they were
getting “a raw deal” with this program. They compared themselves
with full time engineering staff and felt badly that they were the
lowest paid, with the least vacation and the most work on their
plate. A group coaching session helped these students shift their
perspective to that of their peers, who felt very lucky to be part of
a program with many perks compared to other students taking the
traditional path through the degree.

Finally, we found that our model for mentoring needed adjust-
ment. As mentioned above, having our staff play the role of mentor,
instructor, and program developer led to not receiving accurate
information and feedback from students. The model would also not
be scalable as we welcome new cohorts each year and expand with
new partnerships.

3.3 Beta Implementation
After two semesters of the alpha implementation, we began work-
ing on the beta implementation design (simply referred to as beta

University

Company

University

Company

20 hours 20 hours

University

Company

20 hours
40 hours

University

Company

20 hours

20 hours

20 hours

F W S

University
on-campus
course

University
honours project

Company
delivered course

Company
delivered
practicum

Company
delivered
enhanced content
(linked to course)

Company
developer skills
training

Company team
work

20 hours

Legend

20 hours

Figure 2: Course structure for beta implementation.

from here on) to address some of the challenges outlined above.
Our second cohort of students began in September 2017 and will
experience beta fully. Our first cohort of students will experience a
modified version of beta that fits with what they have completed
in alpha so far. The key areas of improvement for beta are centered
around curriculum, placements, and student wellbeing.

With respect to curriculum, the most important changes bring
us closer to meeting our CAWIL goals. The structure of beta is
summarized in Figure 2. In beta, we focus our time on our greatest
strengths: industry-specific knowledge and how it fits with theory.
Rather than find ourselves watching what instructors are doing on
campus and trying to replicate it, we will add a new layer between
academic courses and work at Shopify. Starting second semester,
students will take most core computer science classes on campus,
and then engage with additional material and workshops at Shopify
that link the theory they learn to industry practice. Practicums in
beta capture this enhanced content layer as well as team placements.

CS1 and CS2 will remain as online courses run back to back first
semester. However, the first practicum in beta works differently
than in alpha. Instead of group projects of the students’ choosing,
students participate in developer skills training courses in topics
such as command-line interfaces, and GitHub. Developer skills
training continues in the second and third semesters, sometimes
tied directly to on-campus course and sometimes as standalone
topics.

Students will now begin their first team placements at the be-
ginning of their second year. By pushing back when students join
teams, we are better able to prepare them in terms of technical and
professional skills. In turn, development teams will benefit from
more productive students, and place higher trust in the value of the

partnership. Students should also feel significantly less pressure
to perform at too high a level early. Another benefit of later place-
ments is the ability to better match students to the right team in
terms of skills, personality, need for mentoring, and so on.

Perhaps most importantly, we have put a much greater focus
on student wellbeing for beta. We saw first hand in alpha how
important a positive student experience is, and that performance
in both academics and work placement is significantly affected if
student wellbeing degrades. As a result, we have created a dedicated
role in our education team to facilitate a positive student experience.
We have also designed a Life at Shopify program that matches
students with mentors outside of the education team. The lead of
the education team is additionally available to students, as is the
lead of their work placements when those begin.

3.4 Data Collection
We currently have several mechanisms for collecting data about our
program. In the future, we hope to conduct a more in-depth analysis
of our data. At present, our data informs us on how students are
performing and what changes we can make on an ongoing, realtime
basis.

Student weekly reports: Students submit a weekly report on
Fridays using a stoplight rating for wellbeing, academics, and work
placement. Green signifies no significant issues, yellow signifies
some issues but nothing serious, and red signifies serious issues.
Students reflect on their work from the past week and share plans
for the next week, what they need help with, and any other general
comments.

Mentor bi-weekly reports: Each placement mentor submits a
performance evaluation report every second Friday, again using a

stoplight rating for wellbeing, academics, and work placement re-
sults. Mentors also numerically rate students on various dimensions
ranging from dependability to impact.

Practicum termreports: Students submit summative practicum
reports that tie academic learning objectives to work placements
in the fall and winter terms and allow for reflection on work place-
ments and the program as a whole.

Student life one-on-ones: About once a month, students have
an informal meeting with one of our staff. Additional meetings may
also occur if there are discrepancies in the above reports.

Check-in surveys: Quarterly surveys measure student well be-
ing and other characteristics that can be compared to other Shopify
employees.

3.5 Future Directions
To fully realize our goals of CAWIL, we would like to fully take on
delivery of the core computer science courses at Shopify. By doing
so, time already spent on developer skills training and in work place-
ments could go toward mastering the competencies of a particular
course, and we would be able to use specific technology to illustrate
the theoretical competencies. With a more flexible schedule, theory
could be mastered at just the right time – ideally after gaining some
practical experience to motivate the theory – through independent
learning or workshops that could be developed in collaboration
with the university.

Developing competencies is one way to achieve full adoption of
courses while ensuring assessment remains with the university. We
define a competency as skills or knowledge in a topic that through
various learning experiences help a student achieve a defined learn-
ing outcome. Upon achieving the learning outcome, the student
can claim a new level of mastery such as those inspired by ACM
and IEEE’s Computer Science Curricula [3]: familiarity, usage, and
assessment. For each course to be delivered at Shopify, both part-
ners would work together to list the competencies that all students
should be mastering. When these are agreed upon, exams can be
designed to test to these outcomes in a technology agnostic way.
Then, how a student comes to master the competencies – whether
on campus or at Shopify – no longer matters, so long as they can
succeed on the exam.

As we develop the enhanced content layer for core courses,
we hope to also start building a proposed set of competencies.
Eventually, we hope to be able to move toward fully delivering the
core courses on site.

4 CONCLUSION
We have described a new kind of partnership between academia
and industry following what we call curriculum-aligned work-
integrated learning (CAWIL). This special option to the Carleton’s
Bachelor of Computer Science program is delivered jointly on cam-
pus and at Shopify. Students are paid, have their tuition covered,
and graduate with many hours of practical work experience that is
tied to the theory learned in class.

After iterating on the program’s design, we have several lessons
learned that may help others considering a similar endeavor. Our
suggestions are listed below, organized loosely by topic.

• General:
– Consider experimenting with CAWIL for a semester with
select core courses before trying an entire degree program.

– Expect to hire a substantial number of skilled staff for your
education team, and expect this not to be easy.

– Recognize there are three pillars for a program like this
(curriculum, work placements, and wellbeing). Pay close
attention to wellbeing because if it degrades, the other
two will follow.

• Curriculum:
– Allow sufficient time to develop quality curriculum.
– Look for ways to allow core computer science courses to
overlap as much as possible with work placements (in the
best case, meeting course learning objectives by deliver-
ing the learning experience completely at the industry
partner).

• Work placements:
– Carefully consider each development team’s capacity for
working with students and their availability for provid-
ing support through mentorship, supervision, checking of
work, and so on.

– Carefully consider the minimum set of skills and experi-
ences required to join development teams and be success-
ful. These will vary from team to team.

– Formally and prominently link performance evaluation
and prestige of those working with students to the suc-
cessful development of the student. In other words, ensure
student mentors get recognized.

• Student experience:
– Students will tend toward self-reporting results that are
more positive than reality. Mentors often struggle with
giving complete and candid feedback. Students often strug-
gle with receiving constructive feedback, causing a vicious
cycle.

– Consider proactively giving both mentors and students
workshops on crucial skills such as giving and receiving
feedback, forthright discussion, and other related commu-
nication skills.

– Ensure students have mentors outside of the education
staff and ensure they can speak freely through appropriate
venues.

REFERENCES
[1] Undergraduate Capstone Open Source Projects. http://ucosp.ca/ [accessed August

2017].
[2] L Harris. No end to ICT skills crunch. ITWeb Brainstorm Magazine, pages 78–83,

2011.
[3] Association for Computing Machinery (ACM) Joint Task Force on Computing Cur-

ricula and IEEE Computer Society. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. ACM, New
York, NY, USA, 2013. 999133.

[4] Bruce A McCallum and James C Wilson. They said it wouldn’t work: A history of
cooperative education in Canada. Journal of Cooperative Education, 24(2-3):61–67,
1988.

[5] Yma Pinto. A strategy, implementation and results of a flexible competency based
curriculum. ACM Inroads, 1(2):54–61, 2010.

[6] Alex Radermacher and Gursimran Walia. Gaps between industry expectations
and the abilities of graduates. In Proceeding of the 44th ACM technical symposium
on Computer science education, pages 525–530. ACM, 2013.

	Abstract
	1 Introduction
	2 Curriculum-Aligned Work-Integrated Learning
	2.1 Partnership Goals
	2.2 Partnership Design

	3 Partnership Implementation
	3.1 Alpha Implementation
	3.2 Alpha Challenges
	3.3 Beta Implementation
	3.4 Data Collection
	3.5 Future Directions

	4 Conclusion
	References

