Learn to Program With
Python

This course uses unofficial curriculum created
for Girl Develop It Ottawa by Gail Carmichael.

http:/www.gailcarmichael.com

Today’s class is inspired by content from:

Adventures in Raspberry Pi
by Carrie Anne Philbin

The Python Game Book - Adventure

Game
(http:/thepythongamebook.com/
en:resources:people:jens _horst:partistep002)

How To Make Your Own Text Adventure
On A Computer

(http://www.bluzeandmuse.com/final_site/
how_ to.html)

http://thepythongamebook.com/en:resources:people:jens_horst:part1step002
http://thepythongamebook.com/en:resources:people:jens_horst:part1step002
http://thepythongamebook.com/en:resources:people:jens_horst:part1step002
http://thepythongamebook.com/en:resources:people:jens_horst:part1step002
http://www.bluzeandmuse.com/final_site/how_to.html
http://www.bluzeandmuse.com/final_site/how_to.html
http://www.bluzeandmuse.com/final_site/how_to.html

Access these slides online:

http://gailcarmichael.com/learn-python

mailto:http://gailcarmichael.com/learn-python
mailto:http://gailcarmichael.com/learn-python
mailto:http://gailcarmichael.com/learn-python

TEXT ADVENTURES

Zork

The Game:
http:/www.web-adventures.org/cgi-

bin/webfrotz?s=ZorkDungeon

Command list;
http:/zork.wikia.com/wiki/Comma
nd List

http://www.web-adventures.org/cgi-bin/webfrotz?s=ZorkDungeon
http://www.web-adventures.org/cgi-bin/webfrotz?s=ZorkDungeon
http://www.web-adventures.org/cgi-bin/webfrotz?s=ZorkDungeon
http://www.web-adventures.org/cgi-bin/webfrotz?s=ZorkDungeon
http://www.web-adventures.org/cgi-bin/webfrotz?s=ZorkDungeon
http://www.web-adventures.org/cgi-bin/webfrotz?s=ZorkDungeon
http://zork.wikia.com/wiki/Command_List
http://zork.wikia.com/wiki/Command_List

BASIC USER INPUT

Strings

Text is stored in a program as a “string”, which is
anything inside quotes.

"I'm a string!"
'"Me too!'

'T'11l cause an error'
"So will I
"Don't forget "me"!"

Strings

Text is stored in a program as a “string”, which is
anything inside quotes.

"""Triple quotes means
all my white space and new lines

no matter how weird

will
be
kept . wiww

Input

Python 2:
answer = raw input ("What did you eat today? ")
print (answer)
Python 3:
answer = 1nput ("What did you eat today? ")

print (answer)

Printing Answers Nicely

answer = 1nput ("What did you eat today? ")
print ("Today I ate " + answer)

Adding a Dramatic Pause

import time
answer = 1nput ("What did you eat today? ")
time.sleep (1)

print ("Today I ate " + answer)

Adventure Example

import time

print ("You have entered the classroom for the first time.")
print ("You need to arm yourself for learning.")

time.sleep (1)

weapon = input ("What weapon of mass learning will you "
"choose?\n")
print ("You look in your backpack for " + weapon)

time.sleep (2)

print ("You could not find " + weapon)

Adventure Example

Just like we needed the turtle
import time module to draw, we need the

time module so we can sleep
print ("You have erncerea crie crassroom rtor the first time.")

print ("You need to arm yourself for learning.")

time.sleep (1)

weapon = input ("What weapon of mass learning will you "
"choose?\n")
print ("You look in your backpack for " + weapon)

time.sleep (2)

print ("You could not find " + weapon)

Adventure Example

. . Print some introductory text
import time

print ("You have entered the classroom for the first time.")
print ("You need to arm yourself for learning.")

time.sleep (1)

weapon = input ("What weapon of mass learning will you "
"choose?\n")
print ("You look in your backpack for " + weapon)

time.sleep (2)

print ("You could not find " + weapon)

Adventure Example

import time

print ("You have entered the classroom for the first time.")

1 L = mcsaa ——— O L - i S S ll)

print ("You neec
Cause the program to sleep for
time.sleep (1) the number of seconds providead
as a parameter

weapon = input i e ———— g will you "
"choose?\n")
print ("You look in your backpack for " + weapon)

time.sleep (2)

print ("You could not find " + weapon)

Adventure Example

import time

— P —~_

print ("You have entere”)
print ("You need to arm Ask the user to choose a

'weapon' (notice how the string
time.sleep (1) IS written on multiple lines)

“Ilme.

weapon =| input ("What weapon of mass learning will you "

"choose?\n")
print ("You look in your backpack for " + weapon)
time.sleep (2)

print ("You could not find " + weapon)

")

Adventure Example

import time

print ("You have entered the classroom for the first time.")
print ("You need to arm yourself for learning.")

time.sleep (1)

weapon = 1input ("What weapon

¥ This means add a new line at the
"choosezZ\n")

end of the string

print ("You look in your backpack for " + weapon)
time.sleep (2)

print ("You could not find " + weapon)

Adventure Example

import time

print ("You have entered the classroom for the first time.")
print ("You need to arm yourself for learning.")

time.sleep (1)

weapon (= input ("What weapon of mass learning will you "
"~hoose?\n")
The user's response
IS saved in the box
labelled weapon

(i.e. the weapon
variaple)

n your backpack for " + weapon)

not find " + weapon)

"pencil"

E———_

weapon

weapon = input ("..")

Adventure Example

import time

print ("You have entered the classroom for the first time.")
print ("You need to arm yourself for learning.")

time.sleep (1)

weapon = input ("What weapon of mass learning will you "
"choose?\n")
print ("You look in your backpack for " + weapon)

The user's input is
stored as a string, too,
SO we can stick the
two strings together
to print them nicely.

time.sleep (2)

print ("You could not find " + weapon)

"You could not find "

2,

"banana"

|

"You could not find banana"

e

weapon

LISTS

Where did we use a list before?

Where did we use a list before?

for sideNum in [1, 2, 3, 4, 5]:
alex.forward (100)
alex.left (72)

Where did we use a list before?

for sideNum in [1, 2, 3, 4, 5]:
alex.forward (100)
alex.left (72)

for aColor in ["red", "blue", "yellow",
"green", "purple"]:
alex.color (aColor)
alex.forward (100)
alex.left (72)

Creating a List

Using a List

T

ltem O

print (myList[0])

!

known as the index

Using a List

T

ltem 1

print (myList[1])

Using a List

T

ltem 2

print (myList[2])

Using a List

print (len (myList))

Prints 3

Using a List

print (myList[len (myList)-11])

Prints 2

Using a List

print (myList[len (myList)-11])

Prints 1

Using a List

print (myList[-1])

Watch out for negative numbers as they
may not do what you expect.

The above prints 1.

Adventure Example

import random
import time

Add a new import at the top of the file so
we can use the random module.

Adventure Example

inventory = ["pen", "pencil", "tablet",
"textbook", "banana"]

Below the imports, create a list called
inventory and add some "weapons of mass
learning” to it.

Adventure Example

print ("You pick something randomly from "
"vour backpack 1nstead: ")
time.sleep (3)

print (random.choilce (1nventory))

Finally, at the end of the program, tell the
user they chose something randomly from
their inventory, then actually pick something
to print.

Adventure Example

What could happen if you type
something that is actually in your
inventory when asked for a "weapon"?

CHECKING USER INPUT

Checking whether the user's
choice is already in the list

weapon IS In
the inventory

list
Yes: NoO:
Tell the user Tell the user they
they found the picked
Item. something

random instead.

Checking whether the user's
choice is already in the list

1f weapon in inventory:

print ("You found " + weapon + " 1n your backpack.")
else:
print ("You did not find " + weapon + " in your "
"backpack.™)

print ("You pick something randomly from your "
"backpack instead: ")
print (random.choice (inventory))

Checking whether the user's
choice is already in the list

Checks whether the
contents of the
if weapon in inventory: weapon box (variable)

print ("You found " + are in the list backpack.")
else: inventory list
print ("You did not fina T wedpoull T in your "
"backpack.™)

print ("You pick something randomly from your "
"backpack instead: ")
print (random.choice (inventory))

Checking whether the user's
choice is already in the list

This statement is
ifl weapon in inventory: either true or false. If

print ("You found " + It Is true... backpack.")
else:
print ("You did not find " + weapon + " in your "
"backpack.™)

print ("You pick something randomly from your "
"backpack instead: ")
print (random.choice (inventory))

Checking whether the user's
choice is already in the list

1f weapon in inventory:

print ("You found " + weapon + " 1n your backpack.")
else:
print ("You did not find " + ..this will be printed. "
"backpack.™)

print ("You pick something randomly from your "
"backpack instead: ")
print (random.choice (inventory))

Checking whether the user's
choice is already in the list

if| weapon in inventory: If it is false...
print ("You found " + . your backpack.")
else:
print ("You did not find " + weapon + " in your "
"backpack.™)

print ("You pick something randomly from your "
"backpack instead: ")
print (random.choice (inventory))

Checking whether the user's
choice is already in the list

1f weapon in inventory:

print ("You found " + weapon + " 1n your backpack.")
else:
print ("You did not find " + weapon + " in your "
"backpack.™)

print ("You pick something randomly from your "
"backpack instead: ")
print (random.choice (inventory)) _this code will

run.

Taking Action Based on Input

An adventure game needs a set of
commands the user will interact with.

How can we start implementing our
own?

Taking Action Based on Input

inventory = ["pen", "pencil", "tablet",
"textbook", "banana"]

print ("You are sitting in your chair. "
"What would you like to do next?")

answer = 1nput ("> ")

Taking Action Based on Input

inventory = ["pen", "pencil", "tablet",
"textbook", "banana"]

print ("You are sitting in your chair. "
"What would you like to do next?")

— ' LA > LA _))
answer 1nput () This is a nicer way to ask

for input: set things up,
then give the user a
prompt

Taking Action Based on Input

1f answer == "ask question":
print ("You decide to ask the teacher "
"a question.")

elif answer == "check i1nventory":
print ("Your 1nventory: " +
", ".jolin(inventory))
else:

print ("I don't know that command.")

Taking Action Based on Input

1f answer == "ask question":
print ("You decide to ask the teacher "
"a question.")
We have a new structure
elif| a herethatincludesthe rentory":
pr keyWOl’d elif 7 M4

w

, ".joln(inventory))

else:
print ("I don't know that command.")

1f <something true or false>:

<code>
else:
1f <something true or false>:
<code>
else:
1f <something true or false>:
<code>
else:
<code> We could chain together

a bunch of if statements
together...

1f <something true or false>:

<code>

ellf <something true or false>:
<code>

ellf <something true or false>:
<code>

else:
<code> ..Or we can use elif,

which is short for "else if"

if 4 < 3:
print (1)
elif 4 < 5:
print (2)
elif 4 < o6:
print (3)
else:
print (4)

Important: In a chain of an 1 £, some number of
elif(s), and an optional else, only the first

condition that is True will be used, or else if nothing
before it was True.

Taking Action Based on Input

1f answer == "ask question":
print ("You decide to ask the teacher "
"a question.")

elif answer == "check i1nventory":
print ("Your 1nventory: " +
", ".jolin(inventory))
else:

print ("I don't know that command.")

Taking Action Based on Input

1f answer == "ask question":
print ("You decide to ask the teacher "
"a question.")

elif answer == "check i1nventory":
print ("Your i1nventory: " +
", "l.Join (inventory))

Create a temporary string

 that will be used as a .
Prl separator when printing @t command.")
the list...

else:

Taking Action Based on Input

1f answer == "ask question":
print ("You decide to ask the teacher "
"a question.")

elif answer == "check i1nventory":
print ("Your i1nventory: " +
", "l.Join (inventory))

..then use join to take all
. . the items in the given list
print ("I and stick them together mand.")

INnto a single string using
the separator

else:

Taking Action Based on Input

1f answer == "ask question":
print ("You decide to ask the teacher "
"a question.")

elif answer == "check inventoru":
print ("Your in= What if we don't want to
leave it at that? What if
we want to keep asking
until we get good input?

, ".Jjo1.

else:
print ("I don't know that command.")

LOOPS AND USER INPUT

Drive the same track multiple times

for loop

o)

for lapNum in [1, 2, 3, 4]:
drive the lap

4 laps

-

Drive the same track exactly four times

while loop

Keep driving the track until we run out of
gas (but always go back to the starting
point before stopping).

while loop

answer = input ("> ")

while answer != "1":
print ("Try again")
answer = input ("> ")

Keep driving the track until we run out of
gas (but always go back to the starting
point before stopping).

number = 5

while number < 10:
number = number + 1
print (number)

Important: We always drive the whole track (i.e.
run all the code inside the loop) before coming
back to the beginning. Then we check whether the
loop’s statement is true.

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana']
print ("You are sitting in your chair.")

answerIsGood = False

while answerIsGood == False:
answerIsGood = True

print ("What would you like to do next?")

answer = 1nput ("> ")
1f answer == "ask question":

print ("You decide to ask the teacher a question.")
elif answer == "check inventory":

print ("Your inventory: " + ", ".join(inventory))
else:

answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]

print ("You are sittind gtore g variable called

answerIsGood to keep
track of when we have to
ask for input again

answerIsGood = False

while answerIsGood ==
answerIsGood = True

print ("What would you like to do next?")

answer = 1nput ("> ")
1f answer == "ask question":

print ("You decide to ask the teacher a question.")
elif answer == "check inventory":

print ("Your inventory: " + ", ".join(inventory))
else:

answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]

print ("You are sittinc
Start with the answer

answerIsGood = False being bad so we have to

loop at least once
while answerIsGood ==

answerIsGood = True

print ("What would you like to do next?")

answer = 1nput ("> ")
1f answer == "ask question":

print ("You decide to ask the teacher a question.")
elif answer == "check inventory":

print ("Your inventory: " + ", ".join(inventory))
else:

answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]
print ("You are sitting in your chair.")

answerIsGood = False

We want to keep driving the
track, asking for new input,

while answerIsGood == False: _ .
while the answer is not

answerIsGood = True

good

print ("What would you like to do next?")
answer = input ("> ")
1f answer == "ask question":

print ("You decide to ask the teacher a question.")
elif answer == "check inventory":

print ("Your inventory: " + ", ".join(inventory))
else:

answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]
print ("You are sitting in your chair.")

answerlIsGood = False
while answerIsGood == Fal Assume the answer will be
answerlIsGood = True good until it's proven
otherwise
print ("What would you —_..C e e ey
answer = 1nput ("> ")
1f answer == "ask question":
print ("You decide to ask the teacher a question.")
elif answer == "check inventory":
print ("Your inventory: " + ", ".join(inventory))
else:
answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]
print ("You are sitting in your chair.")

answerIsGood = False
Each lap around the track
while answerIsGood == False: should start by asking the
answerlIsGood = True user what they want to do.

print ("What would you like to do next?")

answer = 1nput ("> ")
1f answer == "ask question":

print ("You decide to ask the teacher a question.")
elif answer == "check inventory":

print ("Your inventory: " + ", ".join(inventory))
else:

answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]
print ("You are sitting in your chair.")

answerIsGood = False

while answerIsGood == False:
answerIsGood = True
Once we have an answer,

print ("What would you like Wwe can decide what to do

answer = 1nput ("> ") with it
1f answer == "ask question":

print ("You decide to ask the teacher a question.")
elif answer == "check inventory":

print ("Your inventory: " + ", ".join(inventory))
else:

answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]
print ("You are sitting in your chair.")

answerIsGood = False

while answerIsGood == False:
answerIsGood = True

print ("What would you like to do next?")

answer = 1nput ("> ")
if answer == "ask question' IN€elseis like a catch-all -
print ("You decide to ac if we haven't handled the
elif answer == "check inver answer yet, we know it
print ("Your inventory: couldn't have been good
else: |
answerIsGood = False

print ("I don't know that command.")

Looping Until Input is Good

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]
print ("You are sitting in your chair.")

answerIsGood = False

while answerIsGood == False:
answerIsGood = True

print ("What would you like to do next?")
answer = input ("> ")

1f answer == "ask question":
print ("You decide to ask the teacher a question.")

elif answer == "check INVe gaiting this variable to False
print ("Your 1nventory:

else: again ensures we drive
answerIsGood = False around the track once more

print ("I don't know that command.")

Generalizing Getting Input

Suppose we have a set number of
commands we want to give users access
to. Can we separate getting good user
input from actually taking action with it?

ROUTINES TO GET INPUT

Creating Customized Routines

def drawSquare (x, V) :
alex.penup ()

~ routine(doThisFirst) alex.goto(x, V)
— alex.pendown ()
- E;.-; for side 1n range (4) :

?’/ __ alex.forward (50)

alex.right (90)

drawSquare (50, 50)
drawSquare (200, 200)

Defining a User Input Routine

def getUserInput (allowedCommands) :
while True:

print ("What do you want to do?")

answer = 1nput ("> ")

1f answer in allowedCommands:
return answer

else:
print ("I don't know that command.™)

Defining a User Input Routine

def| getUserInput(allowedCommands) :

We are defining a routine

want to do?")
called getUserInput

")
1f answer in allowedCommands:
return answer
else:
print ("I don't know that command.™)

Defining a User Input Routine

def getUserInput (allowedCommands) :

hile ° .
WL er_ We are setting up a parameter that
z . should be a list of commands the
ifL user can enter when asked

return answer
else:
print ("I don't know that command.")

Defining a User Input Routine

def getUserInput . .
J b This seems to mean we drive

while True:
: = around the track... foreverl!!
print ("W

answer = 1nput ("> ")
1f answer in allowedCommands:
return answer
else:
print ("I don't know that command.™)

Defining a User Input Routine

def getUserInput (allowedCommands) :
while True:

print ("What do you want to do?")

answer = i1nput ("> ™ _

if answer in allowe Although a routine doesn’t
return answer have to have a result, it can -

clse: this routine "returns” the

print ("I don't | . USEI'S 8NSWeras a result

Defining a User Input Routine

def getUserInput (allowedCommands) :
while True:

print ("What do you want to do?")
answer = 1nput ("> ™

1f answer in allow¢ Returning a result causes the
return answer routine to exit immediately;

else: therefore, the loop also ends.
print ("I don'tl __ _

Generalizing the Question
Asked

def getUserInput (question, allowedCommands) :
while True:
print ([question|)
answer = 1nput ("> ")
1f answer in allowedCommands:
return answer
else:
print ("I don't know that command.™)

Using the Input Routine

command = getUserInput ("What do you want to do?",
["ask question'", "check inventory"])

1f command == "ask question":
print ("You decide to ask the teacher a question.")
elif command == "check inventory":

print ("Your inventory: " + ", ".join (inventory))

Using the Input Routine

command = |getUserInput ("What do you want to do?",

sk question", "check inventory"])
Anything a routine returns

can be saved into a variable 1":
- sk the teacher a question.™)
elif command == "check i1nventory":

print ("Your inventory: " + ", ".join (inventory))

Using the Input Routine

command = getUserInput ("What do you want to do?",
["ask question'", "check inventory"])

1f command == "ask question":

print ("You decide to ask the teacher a question.")
elif command == "check i1nventory":

print ("Your inventory: " + ", ".join (inventory))

What is the advantage of creating
and using the routine?

ROUTINES TO HANDLE
PLACES TO GO

Adding Places to Go

We know how to add commands to our
game, but what about places to go?

A good technigue is to write a routine (aka
function) for each area the player can visit.

Adding Places to Go

def handleClassroom() :
print ("You walk into the classroom just as class begins.")
print ("You can ask the teacher about birds or pencils.")

answer = getUserInput ("Which would you like to ask about?",
["birds", "pencils"])

1f answer == "birds":
print ("The teacher explains how birds are different"
" from mammals.")

elif answer == "pencils":
print ("The teacher sends you to the principal's office"
" for distracting the class...again.")

Going Places

inventory = ["pen", "pencil", "tablet", "textbook", "banana"]

command = getUserInput ("What do you want to do?",
["go to class", "check inventory"])

1f command == "go to class":
handleClassroom ()
elif command == "check inventory":

print ("Your inventory: " + ", ".joiln(inventory))

PUTTING IT ALL TOGETHER

Game Loop

We can ook at our text adventure

game as some valid path through

all of our locations until we reach
the "end.”

while we are not at the end:
call the routine for the current location

Locations Should Return New
Locations

def handleClassroom() :
print ("You walk into the classroom just as class begins.")
print ("You can ask the teacher about birds or pencils.")

answer = getUserInput ("Which would you like to ask about?",
["birds", "pencils"])

if answer == "birds":
print ("The teacher explains how birds are different"
" from mammals.")
return "classroom"

elif answer == "pencils":
print ("The teacher sends you to the principal's office"
" for distracting the class...again.")

return "principal"

The Game Loop Drives Going
Through Locations

inventory = ["pen", "pencil", "tablet", "textbook",
"banana"]
location = "classroom"

while location != "end":
1f location == "classroom":
location = handleClassroom()
elif location == "principal":
print ("To do: make principal")
location = "end"

print ("The end!")

The Game Loop Drives Going
Through Locations

inventory = ["pen", "pencil", "tablet", "textbook",
"banana"]
location = "classroom"

Keep going until the last

while location != "end": . .
. . — location is reached
1f location == "class
location = handleClassroom ()
elif location == "principal":
print ("To do: make principal")
location = "end"

print ("The end!")

The Game Loop Drives Going
Through Locations

inventory = ["pen", "pencil", "tablet", "textbook",
"banana"]

location = "classroom"
Check the current

. . location...
while location != "end":

1f location == "classroom":
location = handleClassroom()

elif location == "principal":
print ("To do: make principal")
location = "end"

print ("The end!")

The Game Loop Drives Going
Through Locations

inventory = ["pen", "pencil", "tablet", "textbook",
"banana"]
location = "classroom"
..and call the appropriate
while location != "end": routine.
1f location == "clas_____.. _
location = handleClassroom ()
elif location == "principal":
print ("To do: make principal")
location = "end"

print ("The end!")

The Game Loop Drives Going
Through Locations

inventory = ["pen", "pencil", "tablet", "textbook",
"banana"]
location = "classroom"

while location != "end":
if location == "classroom":
location = handleClassroom ()

l) ":
< Save the next location for : .
cipal")

use when we drive around
the track next time.

print ("The end!")

Updating getUserlnput

def getUserInput (question, allowedCommands) :
while True:

print (question)
answer = 1nput ("> ")
1f answer 1n allowedCommands:
return answer
elif answer == "check inventory":
print ("Your 1nventory: "
+ ", ".joln (inventory))
else:
print ("I don't know that command.™)

Updating getUserlnput

def getUserInput (question, allowedCommands) :
while True:

print (question)

answer = 1nput ("> ")

1f answer in allowedCommands:
return answer

elif answer == "check inventory":
print ("Your 1nventory: "

+ ", ".join(inventory))

Now that we aren't asking for
commands outside location routines,
we need somewhere to allow users to
check their inventory (and any other

general commands)

nd.")

