
A Framework for Designing Contextualized
Computing Curriculum

Ursula Wolz
RiverSound Solutions/Lang College

Montclair, NJ/New York, NY
ursula.wolz@gmail.com

Gail Carmichael
Shopify

Ottawa, Canada
gail.carmichael@shopify.com

Anne Marie Webber
Goffstown High School

Goffstown, NH
annemarie.webber@sau19.org

Abstract—Contextualized computing is a two-decades-old ap-
proach to providing foundations in computer science. The intent
has always been to promote a diversity of approaches and
to cast a wide net through which to bring under-represented
groups into the field. Much of the curriculum design is ad
hoc. This experience paper presents a disciplined model for
curriculum design that provides a structure and methodology for
integrating computing with another discipline. A framework for
analysis is presented that abstracts the curriculum development
process. It is grounded in 50 years of scholarship on instructional
design. It extends established practice to concurrently develop
goals, objectives, activities, and assessments across at least two
domains. The methodology is applied in two non-traditional
domains: an industry-based work-integrated learning program
at a ’software as a service’ company, and in an alternative high
school mathematics class for students at risk. This approach is
unique in its emphasis on promoting a principled framework for
curriculum design. It extends traditional instructional design by
applying methodologies of agile development to identify, execute,
and assess instructional computing.

Keywords—contextualized computing, interdisciplinary comput-
ing, computing curriculum design, high school computer science

I. A FRAMEWORK FOR CONTEXTUALIZED COMPUTING

The broadening participation movement has fostered a va-
riety of approaches to teaching computer science. Contextu-
alized computing, described by Xu et. al in 2008 [1], is an
approach that directly supports diversity.

Context may be brought into a computing-specific course, or
computing may be integrated into another context altogether.
An early example of contextualized computing was an effort to
teach programming to digital artists [2]. Many other examples
have been reported (such as [3], [4], [5], [6], [7]), typically
with the intention of extending the reach of interdisciplinary
computing [8], [9] or attracting a more diverse group of
people to the field. Contextualized computing is a promising
solution for the lack of quality computing instruction available
[10]; indeed, as coding appears increasingly in high school
graduation requirements, contextualized computing may be the
only practical way to insert computer science into a curriculum
without removing something else.

A problem arises when courses are taught outside the well-
established computer science community. This report describes
a framework used in two contexts: high school alternative
math, and industrial training. The framework provides a struc-
ture through which curriculum designers can attend to the
intersections of the identified computing concepts and learning
goals of the context.

II. A CONCURRENT CURRICULUM DESIGN FRAMEWORK

We present a framework to guide instructional design for
contextualized computing curriculum. It can be used to inte-
grate computing concepts with a targeted context to provide
transparency in goals, expectations, and outcomes for both the
contextual area and computing.

The framework is visualized via the diagram in Figure 1.
The red circle (labeled A) encompasses computing concepts
and skills in a single area of computer science, such as
software engineering or data structures. The two greens circles
represent skills and technologies from the contextual domain
we want to integrate with. The larger green circle (labeled C)
represents skills and technologies that are used more broadly
over time. For example, in a work-integrated learning setting,
it might capture all the skills that employees across a company
use. In a high school setting it might address identified gradua-
tion requirements in the contextual discipline. The smaller dark
green circle (labeled B) is a subset of the light green circle.
It represents the skills that are required immediately in the
contextual discipline. In the work-integrated learning setting,
the dark green circle might be the skills that a student needs
to have to succeed on a team they are joining imminently.
In a high school course it is identified by state or national
standards. The largest blue circle (labeled D) encompasses
the broader skills, knowledge, and attitudes of computing. Not
all of these are necessarily directly applicable to the specific
context we are integrating with, but they contribute to breadth
in the field of computing.

There are intersections between the area of computer sci-
ence in the red circle and the context-specific skills (labelled
1), the context-specific skills used broadly over time (labelled
2), and the broader skills, knowledge, and attitudes of comput-
ing (labelled 3). The best opportunities to integrate computer
science skills with the desired context exist in the first two
intersections (labelled 1 and 2), while the third intersection978-1-5386-5541-2/18/$31.00 c©2020 IEEE

B: Context-specific skills and
technologies needed

immediately

C: Context-specific skills
and technologies used

broadly over time

D: Broader skills /
knowledge / attitudes of

computing

A: A single area of
computer science

3

1

2

Fig. 1. Concurrent curriculum design framework.

(labelled 3) provides an opportunity to strengthen abilities in
computing and indirectly contribute to success.

A. Procedure for Curriculum Development

Contextualized computing requires a dual design process in
that instructional goals for both computing and the contextual
subject area must be developed. As early as 1949 Tyler [11]
proposed a framework for developing large curriculum projects
by addressing the following questions:

1) What is the educational purpose?
2) What experiences are available to meet that purpose?
3) In what manner can these experiences be organized?
4) How can it be determined that the purposes were at-

tained?
Instructional Systems is the field of study that provides theory
and practice for instructional design, typically of a single
content area. One well-recognized design procedure is that of
Gagne, Briggs and Wanger [12]. A process model developed
by Dick & Caray [13] defines stages of analysis from instruc-
tional goals to student outcomes. Within the contextualized
computing framework this requires addressing instructional
goals, learning objectives, student activities, student assess-
ment (such as testing), and instructional assessment (evaluation
of the course).

B. An Iterative Concurrent Process

Starting with the traditional process model, our framework
supports an agile iterative cycle. The initial task is to define
a desired context. In Section III we report on three: natural
language, development at a particular software company, and
high school alternative mathematics. Defining the context is
followed by identifying the area of computer science we wish
to integrate, which may be (or correlate to) an academic
course.

Integration informs the five steps enumerated above as
they are applied to the diagram in Figure 1. Defining the
instructional goals of a learning experience means deciding
broadly what our learners should be able to do by the end of
the experience. At this stage we can identify concepts from
the area of computer science that relate to the desired context
skills (intersections 1 and 2 in the diagram). We can also look

at the broader skills in computer science that relate to the
course and would benefit performance in the context indirectly
(intersection 3). Then we can consider ways to connect the
concepts from the area of computer science with the practice
of the desired context, or vice versa. The same considerations
apply when breaking the instructional goals down into more
detailed, specific learning objectives.

When designing student activities, we have an opportunity
to look even more closely at the overlaps between the area of
computer science and the desired context. A simple approach
might be to re-skin a traditional activity found in an academic
course with surface features from the desired context. Or we
might design an activity to support learners in making explicit
connections between the skills and knowledge from the area
of computer science and those used in the context. For even
deeper integration, we can have our learners solve a problem
in the context using the course’s skills and knowledge. We also
have an opportunity to have our learners perform similarly to
how participants in the integrated context would; for example,
we might ask learners to pair program in a learning experience
the same way they would on a team in an industry setting.

III. EXAMPLES OF DESIGNING FOR TWO DIFFERENT
CONTEXTS

We now illustrate examples of applying the framework using
two dramatically different contexts: an industry-based work-
integrated learning course connecting systems programming
to the workplace context, and a high school alternative math
class in which the final exam was a collaborative programming
project.

We emphasize that this is an experience report rather than
a formal quantitative research study on the efficacy of our
methodology. We are reporting this at RESPECT as a vehicle
for inviting others into using our approach to further enhance
and codify the framework.

A. Systems Programming in an Industrial, Work-Integrated
Learning Context

Shopify, a leading global commerce company, partners with
two local universities to offer a curriculum-aligned work-
integrated learning program [14]. The program aims to close
the gap between what is learned in a computing degree and
the skills required of an industry software developer. Students
participate in learning activities at Shopify and rotate through a
number of team placements throughout their computer science
degrees. One author led the design and launch of the first
version of the program.

We ran an experimental course designed to connect a
campus-based academic systems programming course with the
context of software development practice at Shopify. In this
example, the ‘red circle’ of Figure 1 represents the systems
programming course, while the ‘green circles’ represent the
particular skills used on teams in the company.

1) Instructional Goal : The instructional goals were to:
(1) enhance the learning occurring at the partner university’s
systems programming course with relevant practical skills;

(2) illustrate how the concepts taught in the academic course
applied to the work done at the company; (3) Provide a less
structured learning experience where students could help each
other to research more open-ended tasks that instructors don’t
generally have the ‘answers’ for.

The goals land in the intersections labeled 2 and 3 in Figure
1 in that we targeted skills and concepts from the academic
course that were relevant to the tools and languages used
for software development at the company, but not necessarily
those that students would need immediately during their next
team placements.

2) Learning Objectives: The course’s learning objectives
were as follows:

1) Use the same operating system as the on-campus course
in a new, practical context.

2) Use a command-line interface in an applied setting.
3) Practice writing C code for input/output on a real device.
4) Work with hardware designed within the company.
5) Investigate how memory management works in a high-

level programming language used often in the company.
3) Student Activities: Students met for one hour per week

at Shopify during the same semester they took the on-campus
systems programming course. At Shopify, they were given
open-ended problems centered on working with Raspberry Pis,
interacting with hardware designed in-house at the industry
host, and researching the Ruby interpreter source code. They
were asked to acquire and write simple programs in C for
peripherals for the Pis, participate in a workshop exploring
how to work with the Bluetooth interface of the in-house
hardware, and write a report on what they learned about
memory management in the Ruby interpreter.

4) Student Assessment: Assessment for this course was
informal: students were expected to attend each weekly hour,
and to complete their report in a timely manner. They were
excused for good cause. Unsatisfactory participate was noted
in their next performance review.

5) Instructional Assessment: Instructional assessment was
determined by biweekly student discussions with formally
assigned program mentors as well as an anonymous feedback
form at the end of the semester. We also received detailed
and thoughtful suggestions directly from some students. This
offering was one of the first in the program.

Results of the experimental course were mixed. Observa-
tions showed that students met all the desired objectives. How-
ever, they spent too long working with the Pis and peripherals,
causing them to spend more time in the intersection labeled
3 in Figure 1 than was ideal. Spending more time on skills
directly applicable to their next team placements (intersection
1) and connecting more directly to skills that other teams use
(intersection 2) would have improved student satisfaction.

B. The Alternative Mathematics Classroom

We used our framework to design curriculum for an al-
ternative mathematics class for at-risk high school students.
These students will not qualify to enroll in computing courses,
and our challenge was to integrate foundational programming

skills into their mathematics experience. The school supported
a radical projects experience in which students built a physical
museum exhibit. The alternative math class contributed a
physical quilt.

Turtlestitch (turtlestitch.org), a version of Snap! that empha-
sizes Turtle Geometry, provided the context for introducing
computing. In our framework, the ‘red circle’ (labelled A)
course content is coding in Snap!, the small context ‘green
circle’ (labeled B) is geometry and algebra skills, the large
context ‘green circle’ (labeled C) is common core mathemati-
cal practice that articulated directly with ‘blue circle’ (labeled
D) big computing.

1) Instructional Goal : The instructional goal was to en-
gage the alternative math student in mathematics and coding to
reinforce that formal math was useful, and more to the point,
that they could master it. The secondary goal was to empower
them as coders and provide basic skills in information tech-
nology. The practical goal was to create a collaborative quilt.
The completed quilt was their ‘final exam.’

2) Learning Objectives: Learning objectives came from
three sources: (1) Common Core mathematical practice, (2)
selected Common Core high school standards in algebra and
geometry, (3) CSTA CS Standards. Objectives included (1)
Algebra HSA.Q.A.1 Reason Quantitatively and Use Units, (2)
HS Geometry G-CO:12 Construct Geometric Figures, and (3)
G-MG:1&3 Apply geometric concepts in modeling situations.
Because this a math class, CSTA standards were mapped to
the primary Common Core math practice standards.

3) Student Activities: The learning module was called
‘Problem Solving Unit – Operation Quilt.’ Students were
shown basic turtle stitches (how to make a square). Algorithms
were introduced as Snap! scripts. Discussions occurred that
mixed geometry and coding, such as what the term ‘algorithm’
meant in computing and mathematics. Geometry definitions
in relation to turning through a circle (e.g. core trigonometry)
were introduced by having students use turtle movements to
draw standard polygons, construct a circle (using a control
structure), understand how variables can impact scaling, and
how to construct re-usable components by defining their own
blocks. Students were asked to discover on their own or as
a group how to draw any polygon, and how to approximate
a circle. They were challenged to identify the parameters for
unique design. Once students had mastered essential geometry
and coding skills, each designed and implemented at least two
images for a ‘seasons’ themed quilt shown in Figure 2.

4) Student Assessment: Assessment was tied directly to the
production of blocks on the quilt. They were also required to
write short reflective essays on the experience. Students were
hesitant at first, thinking they were bad at math, and since
Turtlestitch was being taught in a math class they must be
bad at it, too. When they learned that giving up wasn’t an
option, they persevered through all of the coding they were
tasked with, and then some. Everyone passed.

Students rose to this task and accomplished it with excel-
lence. They excelled at helping each other with their coding,
troubleshooting, and embroidering. When setbacks occurred,

Fig. 2. Final exam quilt from the alternative math class

such as designs that were too large, they eagerly embraced
and adopted advanced concepts such as the use of variables
to support scaling.

5) Instructional Assessment: The careful consideration for
the intersection of math and coding skills allowed us to meet
both the formal objectives of the required standards as well
as the subtext of producing math- and tech-confident individ-
uals. Given the opportunity to reflect on the experience, they
articulated that problem solving is hard, and often frustrating,
but that persevering to a tangible outcome is satisfying. The
school administration was satisfied as well: the students all
met their math requirement for graduation.

IV. RECOMMENDATIONS

Based on our experience, we recommend the following
steps when applying our framework, with the most important
considerations appearing first:

1) Identify the computing domain and context.
2) Integrate the specific skills students need now in the

desired context (intersection 1 in the diagram) first.
3) Integrate with broader skills within the specific context

but that students don’t necessarily need immediately
(intersection 2) next.

4) Integrate with the even broader set of skills, knowledge,
and attitudes that contribute to being a stronger computer
scientist (intersection 3) last.

Ensure the course and the context do not feel like separate,
disconnected tracks. When possible, allow students to expe-
rience the practical implications of theory within the context
before learning about the theory. Reduce the amount of time
between experiencing the practice in the context and learning
about the theory behind the practice. Apply the following rules
iteratively:

• If a requirement in a course can be fulfilled by an
experience in the context, avoid making students cover
the requirement twice, instead focusing on connections
to the theory or giving credit toward the course.

• Support students in actively reflecting on connections be-
tween the academic computing material and the context.

• Consider which ‘direction’ would work best: are you
building a computer science course that integrates con-
text, or are you integrating computing into an academic
or industrial learning context?

• Consider whether you are designing a new course, adapt-
ing an existing course (such as Alternative Math), or pro-
viding a dual learning experience (such as the industrial
experience).

V. SUMMARY AND FUTURE WORK

A framework for contextualized computer science curricu-
lum is dependent upon addressing the natural intersections
between the computing learning goals and the contextual
learning goals. The framework provided here, based on sound
principles of instructional design provides a framework for
transparency in course development. We invite you to join us
in this enterprise by visiting the (redacted) website of one of
our authors.

REFERENCES

[1] D. Xu, D. Blank, and D. Kumar, “Games, robots and robot games:
Complementary contexts for introductory computing education,” in
Proceedings of Third International Conference on Game Development
in Computer Science Education (GDCSE’08), 2008.

[2] J. Maeda, Design by numbers. MIT Press, 1999.
[3] J. D. Bayliss and S. Strout, “Games as a "flavor" of cs1,” in Proceed-

ings of the 37th SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’06, (New York, NY, USA), pp. 500–504, ACM,
2006.

[4] R. E. Beck, J. Burg, J. M. Heines, and B. Manaris, “Computing
and music: A spectrum of sound,” in Proceedings of the 42Nd ACM
Technical Symposium on Computer Science Education, SIGCSE ’11,
(New York, NY, USA), pp. 7–8, ACM, 2011.

[5] M. Guzdial, Introduction to computing and programming with Python:
A Multimedia Approach. Prentice-Hall, 2004.

[6] U. Wolz, C. Ault, and T. M. Nakra, “Teaching game design through
cross-disciplinary content and individualized student deliverables,” Jour-
nal of Game Development, vol. 2, no. 2, 2007.

[7] D. Xu, U. Wolz, D. Kumar, and I. Greenburg, “Updating introductory
computer science with creative computation,” in Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, SIGCSE
’18, (New York, NY, USA), pp. 167–172, ACM, 2018.

[8] L. N. Cassel and U. Wolz, “Interdisciplinary computing, successes and
challenges (abstract only),” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, SIGCSE ’13, (New York,
NY, USA), pp. 738–738, ACM, 2013.

[9] U. Wolz and L. B. Cassel, “The role of interdisciplinary computing in
higher education, research and industry,” in Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education, SIGCSE
’12, (New York, NY, USA), pp. 7–8, ACM, 2012.

[10] E. S. Roberts, “Meeting the challenges of rising enrollments,” ACM
Inroads, vol. 2, pp. 4–6, Aug. 2011.

[11] R. Tyler, Basic Principles of Curriculum and Instruction. University of
Chicago Press, 1949.

[12] R. M. Gagne, L. J. Briggs, and W. W. Wager, Principles of Instructional
Design. Harcourt Brace College, 1992.

[13] W. Dick and L. Carey, The Systematic Design of Instruction. Scott
Foresman & Co, 1990.

[14] G. Carmichael, C. Jordan, A. Ross, and A. Evans Adnani, “Curriculum-
aligned work-integrated learning: A new kind of industry-academic de-
gree partnership,” in Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE ’18, (New York, NY, USA),
pp. 586–591, ACM, 2018.

