
1

Using Dependency Graphs to Detect Open Source
Intellectual Property Violation

Gail Carmichael - gbanaszk@connect.carleton.ca and Siamak Sharif - SiamakSharif@hotmail.com

Abstract—Clone detection is important to the open source
community, where projects are their source code are shared
free of charge. The health of these communities is threatened
when open source software is included in another product in
violation of its license agreement. We developed a clone detector
that improves on previous work by Brown et al [5]. We built a
method dependency graph labelled with Brown et al’s n-grams,
used to concisely represent each method’s byte code. Using an
approximate graph matching algorithm, we efficiently report
100% similarity when comparing a Java Archive (JAR) file that
has been modified without changing its meaning.

I. INTRODUCTION

Open Source Software (OSS) provides users with both
a product and the corresponding source code that created
it, often free of charge. Users are allowed to modify or
redistribute the product according to the open source license
assigned to it. Companies that redistribute the product contrary
to its license, either intentionally by hiding it inside their
product, or unintentionally, become legally liable for license
infringement. Furthermore, theft of open source intellectual
property can threaten the health of open source communities,
since those who would use it inappropriately are unlikely to
contribute something in return and help the community grow.
Safety can also be an issue when the origins of faulty software
are unknown.

Possible legal action for license violation can be avoided
by checking for inappropriate inclusion of open source soft-
ware in a product before shipping it. With sufficiently fast
techniques, a piece of software could be examined for this
intellectual property violation as often as required.

One approach to solving this problem is to define a
fingerprint that approximately represents a project without
consuming much memory. A fingerprint for an open source
project can be compared to a fingerprint defined for a piece of
software suspected of intellectual property violation. A simi-
larity percentage value is returned, and specific matches that
warrant further investigation are reported. It is this approach
that we focus on here.

More specifically, we examine a possible fingerprint format
for Java ARchive (JAR) files. We improve upon the ideas of
the FiGD intellectual property violation detector by Brown et
al [5], who identify each method in a JAR by a representative
n-gram based on that method’s byte code. The number of
common n-grams between two JAR files indicates the degree
of similarity of those two projects. Only the compiled byte
code is required for this method. While good results were
obtained with this approach, the n-grams constructed are not
robust for all types of code modifications.

We propose a modification to the process used by FiGD to
create the n-grams representing individual methods. Our goal
is to create an n-gram that will not change when, for example,
a method is moved to another class, or a new argument
is added to the method’s signature. We explore the use of
graphs built on the interdependency of methods to increase
the uniqueness of the new n-gram, and to help reduce the
occurrence of false positives when matching JAR files. In
doing so, we aim to create a robust JAR comparison technique
that is as accurate as FiGD, that remains accurate for new types
of code modifications, and that continues to run efficiently.

Our approach is described in detail in Section III after the
needed background is provided in Section II. Experimental
results outline both the accuracy and running time performance
of our fingerprint in Section IV, while a summary with
suggestions for future work conclude the paper in Section V.

II. BACKGROUND

Clone detection involves determining whether source code
in software has been duplicated. This can be useful within a
single software project to help keep maintenance costs low,
but can also be used in the context of detecting inappropriate
use of open source software in other projects.

Much research has been done on this topic [10], and Bellon
et al provide an extensive comparison survey of clone detec-
tors available as of 2007 [4]. Some clone detectors analyze
source code using, for example, abstract syntax trees [3],
frequent item sets [16], or a combination of lexical and local
dependence analysis [7]. Semantic Design’s Java CloneDR [6]
displays code segments which are the same or almost the same.
Other detectors work with compiled code, thus not requiring
the source at all. Brown et al’s FiGD [5] and University of
Waterloo’s Java Clone Detector [11] are examples of this.

We intend to build on the simplicity of Brown et al’s FiGD
intellectual property detector [5] using a collection of n-grams
to represent all methods in a JAR file. These n-grams are
computed by first obtaining the byte code for each method
in the JAR. A sliding window of size n is passed over the
byte code, moving one byte at a time. At each step, the
contents of the window are added to a hash map that tracks
how many times a particular window value has appeared. The
most unique n-byte chunk is chosen to represent that method
by finding the window value in the hash map that has the
lowest count. Ties are broken by choosing the lowest window
value in sorted order. A value of n = 10 was chosen as the
most effective n-gram size. Once the n-grams are computed
for all methods in one JAR file, the number of matching n-



2

grams in another JAR file is used to determine the similarity
between those two JARs.

Dependency Finder [13] is an open source tool that finds and
reports dependencies between classes, packages, and methods
within a JAR file, as well as dependencies on outside libraries
(including the standard Java libraries). This tool creates de-
tailed dependency graphs that we use together with the above
n-grams.

A common way to find the similarity of two graphs is to
find their Maximum Common Subgraph (MCS). This NP-hard
algorithm is used, for instance, in chemistry [12] and semantic
web ontology [14] analysis. Given two graphs G1 and G2, the
maximum common subgraph problem asks what the largest
subgraph of G1is that is isomorphic to some subgraph of G2.
Two graphs are considered isomorphic if there is a one-to-one
mapping between every node in the first graph to a node in
the second graph in such a way that all edges are preserved.
We can imagine finding a way to overlay the the first graph
so that all nodes and edges line up with their counterparts in
the second graph. We explore this comparison technique for
use with method dependency graphs.

The maximum common subgraph algorithm is implemented
by SimPack [2], an open source package designed “for the
research of similarity between concepts in ontologies or on-
tologies as a whole.” The implementation of MCS is based on
the algorithm described by Valiente in his book Algorithms
on Trees and Graphs [15], and works on graphs that are not
necessarily fully connected. We use this implementation in our
experiments.

III. APPROACH

As mentioned above, our approach is based on Brown
et al’s FiGD intellectual property violation detector. The n-
grams constructed as described in Section II can be used
when comparing modified versions of a JAR file with the
original, and result in high accuracy results for many cases.
For instance, changing method names or variables, or adding
or removing comments from source code, does not affect
the reported similarity of the JAR files. However, moving a
method from one class to another, or adding a superfluous
argument to a method signature, does in fact change that
method’s n-gram and consequently the reported similarity of
the JAR files. If enough such changes are made, FiGD might
fail to detect the inappropriate inclusion of the modified JAR
file.

In our approach, we consider the way methods interact with
each other instead of as an unordered collection of individual
methods. We build a graph with nodes that represent methods.
A directional edge is created between two nodes if one method
uses (depends on) the other. A node in this graph can be
labelled with any string. For example, the n-gram generated
from a method’s byte code, the fully qualified name of the
method, or a blank string may be used. These graphs can be
compared using whatever graph comparison algorithm is most
appropriate.

In the following subsections, the actual format of the
fingerprint used in our experiments is described as well as
the details of the graph created and compared.

A. Generating a Fingerprint From a Dependency Graph

The first stage in generating our fingerprint is creating a
dependency graph from methods found in a JAR file’s class
files. We accomplish this with Dependency Finder. Given a
JAR file name, Dependency Finder will generate a graph in
memory that can be printed in plain text or XML format.
While this tool can create graphs that include packages and
classes as nodes and composition relationships as edges, we
use it to obtain only method dependency graphs.

By default, Dependency Finder includes dependencies be-
tween programming elements within the JAR file and those
outside; for example, many methods in the JAR will use meth-
ods from the standard Java libraries. Ignoring these external
method calls would significantly reduce the size of the final
graph, and potentially reduce the occurrence of false positives
when matching projects that use external libraries in similar
ways. However, since it is difficult to remove calls to these
methods without changing the meaning of the method that is
using them, they provide an excellent baseline for comparison
between two JAR files. In our experiments, we compare results
both with and without the inclusion of these methods.

The XML format used by Dependency Finder is simple and
convenient. It lists methods as individual tags that are labelled
with their fully qualified Java names, including package and
class structure and argument types. Dependency edges are
represented with ‘inbound’ and ‘outbound’ tags placed just
inside the method they are associated with; these again are
labelled with their fully qualified Java names.

The XML string obtained from Dependency Finder forms
the core of our fingerprint. We also include a map with the
XML that associates the unique fully qualified method names
mentioned above with a custom label. This allows us to assign
non-unique and potentially empty labels to the nodes in the
dependency graph while ensuring that the graph can be rebuilt
when the XML is read. The custom labels might be, as just one
of many possibilities, the n-grams associated with the methods.

The advantage of this fingerprint format is that the depen-
dency graph represented within is generic, and can be easily
read into any type of graph object for later comparison. It is
also not tied to a specific programming language, allowing for
experimentation with options other than Java for the actual
fingerprint comparison. However, the size of the fingerprint
could easily be compressed, for instance by storing the bytes
of the final graph object that would eventually be created from
the XML. Thus, while we recommend using the string-based
fingerprint while researching the best graph comparison tech-
niques, we do suggest using a more space-efficient fingerprint
once a technique has been chosen.

B. Using n-grams as Labels

As mentioned in Section III-A, the dependency graphs
used in our fingerprints can be labelled using n-grams. This
additional information about the nodes in the graph allows
for comparison techniques that look at more than just the
graph’s structure. The advantage of n-grams is that they will
not be sensitive to many modifications made to the source



3

code, whereas a simpler label, like the method’s name, could
easily change.

When using this type of label, we generate n-grams for
methods when the fingerprint is created. This way, fingerprints
for common open source projects can be stored in a database
without their corresponding JAR files. We do not generate n-
grams for external methods whose byte code we don’t have
access to, such as those in the standard Java libraries; instead,
we simply use their fully qualified names as labels, since these
cannot be changed.

We generate n-grams the way that FiGD did (described in
Section II). However, we modify the byte code of a method
first to ensure that common changes made to methods, such
as moving them to another class, do not affect the final n-
gram. We analyzed several example JAR files and studied the
byte code specification [8], [1] to determine which byte codes
should be ignored. Once these have been stripped out, the
remaining byte codes are used to create the n-gram.

While these n-grams are less sensitive to common changes
made to methods, they are also less unique. Using them with
FiGD would result in many more false positives. As labels for
a dependency graph, however, they complement the graph’s
inherent structural information. Together, these two pieces of
information can help avoid false positives.

C. Comparing Two Predefined Fingerprints

Once fingerprints for two JAR files have been computed
according to the method described above, they can be com-
pared to each other to determine how similar the JAR files
are. This involves recreating the graphs stored in XML in
memory, and using graph comparison algorithms to determine
their similarity.

The XML string is read using Java’s built in SAX parser
with a custom event handler. This handler can transform
the graph stored in XML to any other type of graph. In
our experiments, we use two different types of graphs: the
SimpleGraphAccessor from SimPack, and a custom
graph type described below. As a node is created for the
target graph type, it is labelled with the value stored in the
fingerprint’s label map (described in Section III-A). This label
might be a blank string or an n-gram. Graph edges are added
when ‘inbound’ and ‘outbound’ tags are encountered in the
XML.

Once graphs from two fingerprints have been loaded,
they can be compared with any comparison algorithm.
In our experiments, we first investigated the maximum
common subgraph algorithm found in SimPack. The
MaxCommonSubgraphIsoValiente object can be used
to calculate the largest subgraph isomorphism between the
two graphs. Once the maximum common subgraph has been
found, we use its size to compute the similarity between the
two graphs. We define similarity as the percentage of nodes
in the maximum common subgraph that are also contained in
the first JAR file’s graph.

The maximum common subgraph algorithm considers only
graph structure, since it finds the largest common isomorphic
subgraph. This can be an advantage when one does not

wish to include labels in the dependency graphs, avoiding
the possibility that those labels might change when simple
modifications are made to the JAR file. Results are promising
in some initial experiments on some very simple JAR files.
However, this algorithm is NP-hard and becomes too slow for
practical use for realistically sized graphs created for real JAR
files.

A possible alternative that we did not explore is to find
the actual maximum common subgraph rather than an isomor-
phism. This requires that the graphs be labelled and that these
labels be fairly stable even when small modifications to the
JAR are made, but may have better running time performance.

Instead, we consider an approximate comparison of the de-
pendency graphs. We load the graph stored in the fingerprint’s
XML into a very simple graph object. A hash map is created
where lists of nodes with the same label are indexed by that
label. Each node represents one method. Instead of storing
references to other node objects to represent dependency
edges, each node simply stores a list of its neighbours’ labels.
This format works well for local node comparisons but would
not be used for algorithms that consider the overall graph
structure.

To compare two of these simple graphs to each other, we
loop through each node in the first graph, and using the hash
map stored in the graphs, we find the list of nodes in the second
graph with the same label. We then loop through this list and
find the best match to the first graph’s node based on how
many neighbouring labels are the same. If there is a such a
node, we compute a similarity score out of 1.0 by dividing the
number of common neighbour labels by of the total number
of neighbours. This score is added to a running total. The final
sum of all nodes’ scores will be at most the number of nodes
in the first graph. The final similarity percentage is computed
by dividing the sum of scores by the number of nodes in the
graph. This algorithm is summarized in Algorithm 1.

This approximation relies on labelled nodes to avoid false
positives. The less unique labels are, the more difficult it would
be to use the neighbouring nodes as a distinguishing factor. We
only experimented with neighbours at a depth of one in our
analysis, but it may be worth exploring more deeply into the
tree. The computation of the score for one node might involve
assigning 1.0/n of the score to each of n levels explored.

This simple graph comparison algorithm does not consider
as much of a graph’s structural information as the NP-hard
maximum common subgraph approach, but runs much more
efficiently. If labels are relatively unique, and if methods gen-
erally depend on some constant number of other methods, then
the running time will be on the order of the number of methods
in the first graph. The running time will still be polynomial in
the worst case, and therefore always outperform the maximum
common subgraph algorithm in terms of efficiency.

Experimental results proving the accuracy and efficiency of
this approach are presented next in Section IV.

IV. EXPERIMENTAL RESULTS

Our approach, described in detail in the previous section,
allows us to create fingerprints using a dependency graph



4

Algorithm 1 Simple dependency graph comparison.
Input: Graphs G1 and G2
Output: Similarity score out of 1.0

total← 0

for each node ∈ G1
listOfNodes← withLabel(getLabel(node), G2)

// based on most matching neighbour labels
bestMatch← findBestMatch(node, listOfNodes)

num← commonNeighbours(node, bestMatch)

if num = length(listOfNodes)
// Accounts for case that neither node has neighbours
total← total + 1

else
total← total + (num/length(listOfNodes))

end if
end for

return total/numNodes(G1)

labelled with n-grams for internal methods or fully qualified
Java names for external methods. In this section, we present
experimental results for our approach’s accuracy for detecting
intellectual property detection, and we present the running time
performance.

Our first results, shown in Table I, were obtained by making
a common change to a simple JAR file and comparing the new
version to the original. The JAR file, about 35 KB in size,
is an early but complete version of our code written for the
creation of our fingerprint and the conversion of the fingerprint
to a graph object. The running times noted include all stages
of clone detection, beginning with unzipping the JAR file and
ending with graph comparison. The actual graph comparison
took 3 ms for all experiments in this set of results.

These results show that matching works as expected when
the JAR file is compared against itself. When class files are
added, the similarity remains at 100% because the original is
completely contained in the copy, but when files are removed
from the copy this is no longer true. Note that we do not see
a similarity of 10/14 = 71.4% in this case; this is because
our similarity is not based on individual class files, but on the
methods within. We also see a low percentage of similarity
when comparing the JAR file to a completely unrelated one.
This similarity might be even lower if we did not modify our
byte code to handle the other types of changes, since this
action makes the n-gram less unique for a particular method.
However, 12.5% is low enough to be confident that the JARs
are indeed unrelated.

The remaining results show that the JAR file’s similarity
is not affected by changes that could easily be made by
somebody hoping to hide open source code in their own
project. Brown et al showed that their FiGD intellectual
property violation detector reports 100% similarity for the

Changes to copy of JAR
file

Similarity (%) Total Running
Time (ms)

No changes 100.0 1512
Class files added 100.0 1496

Class files removed (4 out
of 14)

59.8 1319

Method moved to subclass 100.0 1442
Static method moved to

another class
100.0 1398

Extra argument added to
a method

100.0 1370

Name of method changed 100.0 1384
Name of variable changed

in method
100.0 1363

Comments added to
method

100.0 1438

Unrelated JAR
(org.eclipse.jface.text.jar)

12.5 10734

Table I
PERFORMANCE RESULTS FOR COMPARING A JAR FILES TO A VERSION OF
ITSELF WITH COMMON CHANGES MADE (GRAPH COMPARISON RUNNING

TIME 3 MS IN ALL CASES)

following types of changes:

• Original compared to copy where method names were
changed

• Original compared to copy where variables were renamed
and comments added or removed

• Original compared to copy where additional class files
were added

• Original compared to copy with methods and class files
removed

Our clone detector continues to report 100% for each of these
cases. Brown et al did not report on moving methods to
another class or adding a superfluous argument to the method’s
signature, and upon testing these scenarios, we found that
the method’s byte code and thus n-gram changes. With our
modified approach, we eliminate byte codes that will change
in these cases and are able to report 100% similarity.

Next, we focus on the accuracy and performance of our
clone detector for real-world examples. Table II shows a series
of comparisons between JAR files with a range of file sizes
randomly chosen from the Eclipse plug-in directory. Although
the size of a JAR file does not necessarily indicate how large
and complex its dependency graph will be, a larger JAR file
does tend to result in a larger graph. This is reflected in
the increasing length of running times for the larger JAR
files. Note that the graph comparison alone remains efficient
even when the overall clone detection process can be slow in
comparison, indicating that the approximation is fast but that
the other stages would benefit from some optimizations.

The results for these realistic JAR files show that larger
JAR files still give 100% similarity when matched against
themselves. When matched against other unrelated JAR files,
low percentages of similarity are generally obtained. However,
in some cases the similarity of unrelated JAR files exceeded
20%. While it is reasonable to suggest that any percentages
under, say, 30% could be taken to indicate that two JAR files
are probably not related, this does indicate that modifying the
byte code before computing a method’s n-gram does lower



5

Description of Test Similarity Result
(%)

Similarity Result
(%)

[no external
methods]

Comparison
Running Time (ms)

Total Running Time
(ms)

commons-attributesapi-2.2.jar (36 KB)
compared to itself 100.0 100.0 3 1465

org.eclipse.jface.text.jar (949 KB)
compared to itself 100.0 100.0 42 45239

org.eclipse.pde.ui.jar (4051 KB)
compared to itself 100.0 100.0 195 415824

commons-attributesapi-2.2.jar
compared to org.eclipse.jface.text.jar 20.9 9.0 4 8978

Previous test in reverse 0.8 0.3 14 39636
commons-attributesapi-2.2.jar

compared to org.eclipse.pde.ui.jar 25.4 9.8 12 36740

Previous test in reverse 0.7 1.0 43 355647
org.eclipse.jface.text.jar compared to

org.eclipse.pde.ui.jar 13.0 13.5 36 65096

Previous test in reverse 6.5 11.6 62 358719

Table II
PERFORMANCE RESULTS FOR SEVERAL REAL-WORLD EXAMPLE COMPARISONS

the uniqueness. Even so, Brown et al reported some results
that also exceeded 20% for unrelated JAR files, so the lower
uniqueness was likely offset by our use of dependency graphs
to help distinguish n-grams.

Table II also includes a column indicating the similarity
achieved when methods external to the JAR file were not
included in the dependency graph. In some cases, not including
these methods lowered the similarity for unrelated JAR files
significantly, but in others, the similarity rose. From these
results, it is not possible to conclude whether these methods
should be included in general or not, and more research is
required.

V. CONCLUSION AND FUTURE WORK

The problem of detecting open source intellectual property
violation is important for legal and safety reasons as well as
the prosperity of open source communities. It can be tackled
in several different ways; we took the approach of generating
fingerprints for open source Java byte code, which can then
be compared to another piece of software’s fingerprint. We
generate dependency graphs using Dependency Finder, and
compare these graphs using an approximate graph matching
algorithm. Our fingerprints include n-grams based on modified
byte code so they remain stable when common changes are
made to an open source project before inclusion in another
product. These n-grams are used to label the dependency
graphs generated for the fingerprint.

Our results showed that our clone detection algorithm is
able to report 100% similarity between JAR files that have
been modified in a way that does not change their meaning.
In particular, modifications that were not detected by previous
approaches, such as moving a method to its superclass or
adding a superfluous argument to its signature, no longer affect
similarity results. We also report low similarities between two
unrelated JAR files. The running time for the approximate
graph comparison itself is very fast at only 195 ms for a 5
MB JAR file.

Future research directions include further investigation into
an approximate maximum common subgraph implementation

[9], a non-isomorphic subgraph matching algorithm using n-
gram labels, and the benefit or drawback of including external
methods in the dependency graph.

REFERENCES

[1] Java bytecode instruction listings. http://en.wikipedia.org/wiki/List_of_
Java_bytecode_instructions [accessed Apr 2010].

[2] Daniel Baggenstos, Beat Fluri, Antoon Goderis, Silvan Hollenstein,
Manuel Kägi, Tobias Sager, Markus Stocker, and Michael Würsch. Sim-
pack. http://www.ifi.uzh.ch/ddis/research/semweb/simpack/ [accessed
Mar 2010].

[3] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In ICSM ’98:
Proceedings of the International Conference on Software Maintenance,
page 368, Washington, DC, USA, 1998. IEEE Computer Society.

[4] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE Trans.
Softw. Eng., 33(9):577–591, 2007.

[5] Carson Brown, David Barrera, and Dwight Deugo. FiGD: An open
source intellectual property violation detector. In Proceedings of the
21st International Conference on Software Engineering & Knowledge
Engineering, pages 536–541, July 2009.

[6] Semantic Designs. Java clonedr. http://www.semdesigns.com/Products/
Clone/JavaCloneDR.html [accessed Mar 2010].

[7] Yue Jia, Dave Binkley, Mark Harman, Jens Krinke, and Makoto Mat-
sushita. KClone: A proposed approach to fast precise code clone
detection. In 3rd INTERNATIONAL WORKHSOP ON IWSC’2009, 2009.

[8] Tim Lindholm and Frank Yellin. The java virtual machine
specification. http://java.sun.com/docs/books/jvms/second_edition/html/
VMSpecTOC.doc.html [accessed Apr 2010].

[9] Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. From exact
to approximate maximum common subgraph. pages 263–272. 2005.

[10] University of Alabama at Birmingham. Clone detection literature. http:
//students.cis.uab.edu/tairasr/clones/literature/ [accessed Mar 2010].

[11] University of Waterloo Software Architecture Group. JCD: Java clone
detector. http://www.swag.uwaterloo.ca/jcd/index.html [accessed Mar
2010].

[12] John W. Raymond and Peter Willett. Maximum common subgraph
isomorphism algorithms for the matching of chemical structures. Journal
of Computer-Aided Molecular Design, 16(7):521–533, July 2002.

[13] Jean Tessier. Dependency finder. http://depfind.sourceforge.net/ [ac-
cessed Mar 2010].

[14] Bach Thanh Le and Rose Dieng-Kuntz. A graph-based algorithm
for alignment of owl ontologies. In WI ’07: Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, pages
466–469, Washington, DC, USA, 2007. IEEE Computer Society.

[15] Gabriel Valiente. Algorithms on Trees and Graphs. Springer-Verlag,
Berlin, 2002.



6

[16] Vera Wahler, Dietmar Seipel, Jurgen Wolff v. Gudenberg, and Gregor
Fischer. Clone detection in source code by frequent itemset techniques.
In SCAM ’04: Proceedings of the Source Code Analysis and Manipula-
tion, Fourth IEEE International Workshop, pages 128–135, Washington,
DC, USA, 2004. IEEE Computer Society.


