Welcome!

GO cODE
 GIRL

ABOUT ME

GO CODE GIRL

Who Are You?

-What school do you go to? -What grade are you in?

- What made you come to the workshop?
- What's something interesting we can't tell by looking at you?

What is Computer Science?

$$
\begin{aligned}
& \text { thinking=ue }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - umiveresearich }
\end{aligned}
$$

Why Learning to Code is Awesome

https://www.youtube.com/watch?v=nKlu9yen5nc

Getting Started Thinking Like a Computer

http://csunplugged.org/programming-languages

Turtle Graphics

Open IDLE

```
7/ Python Shell
    \square\square
File Edit Shell Debug Options Windows Help
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMD64)] on
win32
Type "copyright", "credits" or "license()" for more information.
>>> |

\section*{File, New Window}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{76. Python Shell} \\
\hline File Edit Shell & Debug Options & Windows Help \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \begin{tabular}{l}
Open... \\
Recent Files
\end{tabular} & \(\mathrm{Ctrl}+\mathrm{O}\), & \multirow[t]{4}{*}{"credits" or "licen:} \\
\hline Open Module... & Alt+M & \\
\hline Class Browser & Alt+C & \\
\hline Path Browser & & \\
\hline Save & Ctrl + S & \\
\hline Save As... & Ctrl+Shift+S & \\
\hline Save Copy As... & Alt+Shift+S & \\
\hline Print Window & Ctrl + P & \\
\hline Close & Alt+F4 & \\
\hline Exit & Ctrl+Q & \\
\hline
\end{tabular}

\section*{GO \\ CODE GIRL}

\section*{Type this in the new window:}
```

import turtle
wn = turtle.Screen()
alex = turtle.Turtle()
alex.forward(150)
alex.left(90)
alex.forward(75)
wn.exitonclick()

```

\section*{Save, Save As}

Note: make sure you add. py to the end of your file!

\section*{Run, Run Module}
```

76 1-simpleTurtle.py - C:\Users\Gai\Dropbox\Projects\Outreach\Go C
File Edit Format Run Options Windows Help
import tur
Python Shell
wn = turtl Check Module Alt+X
alex = tur RunModule F5
alex.forward(150)
alex.left(90)
alex.forward(75)
wn.exitonclick()

```

```

import turtle

```

Tell Python you want to use Turtle Graphics in your program
```

wn = turtle.Screen()
alex = turtle.Turtle()
alex.forward(150)
alex.left(90)
alex.forward(75)
wn.exitonclick()

```

\section*{Create a new window to draw with the turtle on; refer to the window from now on as wn}
```

import turtle

```
```

wn = turtle.Screen()

```
```

alex = turtle.Turtle()
alex.forward(150)
alex.left(90)
alex.forward(75)
wn.exitonclick()

```
```

import turtle
wn = turtle.Scr

```

Ask Turtle Graphics to create a new Turtle to draw with; call it alex
```

alex = turtle.Turtle()
a\perpex.士orward(15U)
alex.left(90)
alex.forward(75)
wn.exitonclick()

```
```

import turtle
wn = turtle.Screen()

```
alex = turtle.Turtl
alex.forward (150)
alex.left(90)
alex.forward(75)
wn.exitonclick()

Ask alex to go forward, turn left, and go forward again, drawing while she moves
```

import turtle
wn = turtle.Screen()
alex = turtle.Turtle()
alex.forward(150)
alex.left(90)
alex.forward(75)

```
wn.exitonclick()

Tell the program to exit when someone clicks on the window we named wn

Try changing the numbers in
alex's movement code, or even add new movements.

\section*{Can you get alex to draw a square?}

\section*{How about a pentagon?}

\section*{Repetition}

\section*{GO cODE GIRL}

\section*{One way to draw a pentagon...}
```

alex.forward(100)
alex.left(72)
alex.forward(100)
alex.left(72)
alex.forward(100)
alex.left(72)
alex.forward(100)
alex.left(72)
alex.forward(100)
alex.left(72)

```

\section*{One way to draw a pentagon...}
```

alex.forward(100)
alex.left(72)

```

Can we avoid writing the same lines of code over and over?
```

alex.left(72)
alex.forward(100)
alex.left(72)

```

\section*{Loops}


Drive the same track multiple times

\section*{for loop}


Drive the same track exactly four times

\section*{for loop}


Drive the same track exactly four times

\section*{Using a for loop to draw a pentagon}
for sideNum in \([1,2,3,4,5]\) : alex.forward (100) alex.left(72)

Us' This gives a name to the", draw a pentagon lap numbers as we "drive" around (first it will be 1, then \(2, \ldots\) )
\[
\begin{aligned}
& \text { for } \begin{array}{l}
\text { sideNum in }[1,2,3,4,5]: \\
\text { alex.forward }(100) \\
\text { alex.left }(72)
\end{array},=\text { : }
\end{aligned}
\]

\section*{Using a for loop to draw a pentagon}

This is a list representing the lap numbers.
for sideNum in \([1,2,3,4,5]\) : alex.forward(100) alex.left(72)

\section*{Using a for loop to draw a dentacon The colon says we're ready} to specify how to drive each lap
for sideNum in \([1,2,3,4,5]\) : alex.forward(100) alex.left(72)

\section*{Using a for loop to draw a pentagon}
for sideNum in \([1,2,3,4,5]\) : alex.forward (100) alex.left(72)

We use indentation to show what code belongs inside the for loop

\section*{Using a for loop to draw a pentagon}
for sideNum in \([1,2,3,4,5]\) : alex.forward(100) alex.left(72)

\section*{Using a for loop to draw a pentagon}
for sideNum in \([1,2,3,4,5]\) : alex.forward(100) alex.left(72)

This is the code that will run each lap ( 5 times in this case)

\section*{Shortcut: range}
for sideNum in range(5):
alex.forward(100)
alex.left(72)

\section*{Shortcut: range}

This produces the list
\[
[0,1,2,3,4]
\]
for sideNum in range(5): alex. forward (100) alex.left(72)

\section*{Shortcut: range}
for sideNum in range(5):
alex.forward(100)
alex.left(72)

> Important:
> We still have 5 laps, we're just counting them from 0 instead of 1

\section*{Try drawing a hexagon instead!}


What other cool shapes or designs can you make?

\section*{Variables}

\section*{Remember our shape drawing loop?}
for sideNum in range(5):
alex.forward(100)
alex.left(72)

\section*{What if we wanted to draw an octagon?}


\section*{What if we wanted to draw an octaoon?}

This number has to change so we can have more sides...

\author{
for sideNum in range(5): alex.forward(100) \\ alex.left(72)
}

\section*{What if we wanted to draw an octagon?}
for sideNum in range(5):
alex.forward(100)
alex.left(72)
...and this angle has to change.

\section*{What if we wanted to draw an octagon?}


\section*{What if we wanted to draw an octagon?}


\section*{What if we wanted to draw an octagon?}

\section*{What if we could write the number of sides down and just use that to decide the number of laps and to calculate the angle to turn?}

\section*{Variables}

\section*{variableName}


\section*{Code to draw an octagon}
numberOfSides \(=8\)
for sideNum in range(numberOfSides):
alex.forward(100)
alex.left(360/numberOfSides)

\section*{Code to draw an octagon}

\section*{Now we have a box labelled}

\section*{numberOfSides}
numberOfSides \(=8\)
for sideNum in range(numberOfSides):
alex.forward(100)
alex.left(360/numberOfSides)

\section*{Code to draw an octagon}
numberOfSides \(=8\)
This puts 8 into the box
for sideNum in range(numberOfSides):
alex.forward (100)
alex.left(360/numberOfSides)

\section*{Code to draw an octagon}

numberOfSides \(=8\)

\section*{Code to draw an octagon}
numberOfSides \(=8\)

This grabs whatever is in the box (in this case, 8)
for sideNum in range numberOfSides : alex.forward(100) alex.left(360/numberOfSides)

\section*{Code to draw an octagon}

range (numberOfSides)

\section*{What do we have to do to change the number of sides in our shape?}

There's just one line of code to change now!

Can you get alex to draw a shape with ten sides?

How about a circle?

\section*{We have used variables already!}


\section*{We have used variables already!}

the turtle we made before

ask the turtle to move
alex.forward(150)

\section*{We have used variables already!}
the turtle we made before
ask the turtle to move

1 alex forward (150)

\section*{GO \\ code \\ GIRL}

\section*{We have used variables already!}

the turtle we made before

ask the turtle
\[
\text { alex.forward (150) } 2
\]

\title{
More Turtle Commands
}

\section*{Try these commands - experiment and see what designs you can make!}
```

alex.shape("turtle")
alex.reset()
alex.backward(someNumber)
alex.up()
alex.color("red")
alex.pensize(someNumber)
alex.penup()
alex.pendown()
alex.stamp()
alex.circle(someNumber)

```

\section*{Type this code and see what it does!}
for aColor in ["red", "blue", "yellow", "green", "purple"]:

\author{
alex.color(aColor) \\ alex.forward(100) \\ alex.left(72)
}

\section*{Using a color variable in a loop}

This variable will change every lap
for aColor in ["red", "blue", "yellow", "green", "purple"]:
alex.color(aColor)
alex.forward(100)
alex.left(72)

\section*{Using a color variable in a loop}

Instead of referring to a lap with a number, this time we'll use a color
\[
\text { for aColor in ["red", "blue", "yellow", } \begin{gathered}
\text { "green", "purple"]: }
\end{gathered}
\]
\[
\begin{aligned}
& \text { alex.color(aColor) } \\
& \text { alex.forward(100) } \\
& \text { alex.left }(72)
\end{aligned}
\]

\section*{Using a color variable in a loop}

The for loop will have 5 laps since we have to go through each color one at a time
```

for aColor in ["red", "blue", "yellow",
"green", "purple"]:
alex.color(aColor)
alex.forward(100)
alex.left(72)

```

\section*{Using a color variable in a loop}

A word in quotes is called a string it is just text, not a variable
for aColor in \(\begin{array}{r}{[\text { "red", "blue", "yellow", }} \\ \text { "green", "purple"]: }\end{array}\)
\[
\begin{aligned}
& \text { alex.color(aColor) } \\
& \text { alex.forward(100) } \\
& \text { alex.left(72) }
\end{aligned}
\]

\section*{Using a color variable in a loop}
for aColor in ["red", "blue", "yellow", "green", "purple"]:
alex.color (aColor) Since the value in the aColor box alex.forward(100) alex.left(72) changes each lap, we set a new color to draw with each time

\section*{Using print statements}

You can print messages to the console with print (). This can help you better understand some code or help find the source of a problem.

\section*{Using print statements}

Example:
print(range (5, 30, 2))

\section*{Challenges: Can you draw} this?

\section*{GO cODE GIRL}


Try using range (5, 30,2) in your loop instead!


Try it with a variable number of sides and angle to turn, then change the variables!


\title{
True, False, and If
}

\section*{boolean}

\section*{Yes/ \\ True \\ or \\ No/ \\ False}

\section*{If/Else Statements}

\section*{boolean value}

If true, do this
Otherwise, do that


\section*{If/Else Statements}


\section*{If/Else Statements}

\section*{Lap number is even}

Change color to red

Change color to green

\section*{If/Else Statements}
"Mod" operator means remainder:
\[
\begin{aligned}
& 5 \% 1=0 \\
& 5 \% 2=1 \\
& 5 \% 3=2 \\
& 5 \% 4=1 \\
& 5 \% 5=0
\end{aligned}
\]

\section*{Type this and see what happens:}
for sideNum in range(9):
if size \% \(2=0\) :
alex.color("red")
else:

\author{
alex.color("green") \\ alex.forward(100) \\ alex.left(225)
}```

